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Photoactivation experiments have a wide range of application areas in nuclear, particle physics, and med-
ical physics such as measuring energy levels and half-lifes of nuclei, experiments for understanding imag-
ing methods in medicine, isotope production for patient treatment, radiation security and transportation,
radiation therapy, and astrophysics processes. In this study, some energy transition values of the decay
radiations of 75Ge and 69Ge, which are the products of photonuclear reactions (c, n) with germanium iso-
topes (75Ge and 69Ge), were measured. The gamma spectrum as a result of atomic transitions were anal-
ysed by using a high purity semiconductor germanium detector and the energy transition values which
are presented here were compared with the ones which are the best in literature. It was observed that the
results presented are in agreement with literature in error range and some results have better precisions.
� 2018 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
Introduction

The data which are obtained as results of photonuclear reac-
tions could be used for different purposes such as determining
half-life of atomic nuclei [1–6], measuring energy levels of nuclei
and study of decay products [7–10], analysis of required designs
for radiation security and transportation, applications in radiation
therapy and dose calculations [11–15], determining energy of pho-
tons produced in linear accelerators [16], isotope production
[17,18], nuclear waste transformation, analysis of atomic nuclei
which is essential for astrophysics and nucleosynthesis process
[19–26], analysis of fission and fusion reactions [27] and activation
analysis [28–31]. The information about what energy levels nuclei
have and how long nuclei stay in certain energy levels is important
to know about nuclear structures. The aim of this study is to deter-
mine some energy transition values of interested and clearly ana-
lyzed decay radiations belonging to Germanium isotopes as a
result of photon induced reactions even with better precision com-
pared to data presented in literature. In the rest of this section, first
some historical review belonging to measurements of energy tran-
sition values in several nuclei are given and after that our experi-
ment and analysis technique are briefly explained.

The experimental studies to determine energy levels and to
measure half-life of nuclei and the study of decay products have
also been performed with different methods rather than photoac-
tivation such as neutron and proton induced reactions. For exam-
ple, the energy levels of 31As and 19Ne were determined with the
reactions of 32Sðn; dÞ31P and 19Fðp;nÞ19Ne, respectively [32]. The
energy levels of 90Y nucleus were measured with the reaction of
deuteron-proton ðd; pÞ [33]. The energy levels of 47V and 49V were
determined by using the proton-alpha ðp;aÞ reaction [34]. Krane
studied the decays of 72Ga with the neutron bombardment [35].
In the study which was performed by Siegel and Glendenin, the
half-life was assigned for 73Ga [5]. Ythier and his colleagues, the
half-life for 73Ga and two beta branchings were found with the
bombardment of neutron and deuteron [36]. Moreover, some other
studies carried out with developing technologies for measuring
energy levels are listed in the references of [37–41].

The presented study is an example of using clinic linear acceler-
ator (cLinac) in a nuclear physics experiment. In this study, a cLinac
was used as a photon source for the photonuclear interaction. It
has already been shown that cLinacs could be used for photoacti-
vation experiments by providing required photon intensity [42]
right along with electron linear accelerators [43–45]. The required
photons were obtained with a cLinac, directed to Germanium iso-
topes and some nuclear energy transitions belonging to products of
germanium isotopes were determined. The other aspect of this
study is that the results presented here were obtained with an
analysis technique which has offline nature. That is, the results
were extracted from complete data which were collected during
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Fig. 1. Photopeak spectrum of Germanium sample hitting detector channels in the
range of 0–4000.
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Fig. 2. Photopeak spectrum of Germanium sample hitting detector channels in the
range of 4000–9000.
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the experiment without any constraints. That means prompt ener-
gies are not considered but analysis was carried out over accumu-
lated data. The analysis details are explained in the analysis section
of this report.

Theory and experiment

In this study, the observed and analyzed energy transitions
belonging to ðc;nÞ photonuclear reactions on Germanium isotopes
are shown in Eqs. (1) and (2):

70Geþ c ! 69Geþ n ð1Þ

76Geþ c ! 75Geþ n ð2Þ
69Ge and 75Ge are called as the product nuclei of the germanium iso-
topes after gamma irradiation. These products decay and then
excited daughter nuclei (69Ga� and 75As�) are produced. The decay
processes are given in Eqs. (3) and (4):

69Ge ! 69Ga� þ e� þ �me ð3Þ

75Ge ! 75As� þ e� þ �me ð4Þ
Then, these excited daughter nuclei emit photons as a result of

atomic transitions which will be detected in our high purity ger-
manium detector. These processes are illustrated in Eqs. (5) and
(6):

69Ga� ! 69Gaþ c ð5Þ

75As� ! 75Asþ c ð6Þ
The bremsstrahlung photons used in activation processes were

obtained from a Philips (Elekta TM Synergy) clinic electron linear
accelerator which is used basically for medical purposes. The tech-
nical documentation about the clinical linac can be found at [46].
The primary electrons were produced by a gun whose energy is
50 keV and has the pulse repetition frequency of 400 Hz. The accel-
erator reached a peak power of about 5 MW and provided 4, 6 and
18 MeV endpoint bremsstrahlung energy spectrum with tungsten
element as bremsstrahlung converter. 0.3 mm thick tungsten tar-
get was used as a converter target.

The radioactivity measurements were performed with a p-type,
coaxial, and high purity germanium detector (HPGe). The detector
has a cooling with electricity. The brand of the detector is AMATEK
ORTEC (GEM40P483) and its relative efficiency is 40%. The detector
has FWHM values of 768 eV and 1.85 keV at 122 keV peak of 57Co
radioisotope and at 1332 keV peak of 60Co radioisotope, respec-
tively [47]. The HPGe detector was connected to a computer and
NIM (Nuclear Instrumentation Module) which is consists of a
power supply, spectroscopy amplifier and analog to digital con-
verter which all belong to the company of ORTEC. The detector
are divided into 16,830 channels with about 0.18 keV energy range
that each channel covers. It was saved in a 10 cm thick lead shield
whose inner side was coated with 2 mm thick copper layer to avoid
X-rays which could be caused by the lead shield.

The germanium sample is 10 gr GeO2 powder with 99.99% pur-
ity which was formed as a pill by squeezing it. The sample was
placed 58 cm away from the source of clinic accelerator (tungsten
target) and was beamed out with bremsstrahlung photons which
have 18 MeV endpoint energy. The irradiation time for germanium
sample was about half an hour and the delivered dose are esti-
mated as 5 Gy/min corresponding about 1011 electron/s. This gives
5 � 105 photon/(MeV cm2 s). The sample was located in front of
the detector nearly 10 min later after it was beamed out in clinic
accelerator and the counting process took place for 75 h. The
records were taken for different time periods (9, 90, 900, 8775 s
spectrum records). Besides, counts were obtained for calibration
sources immediately before and after the counting process of our
interested germanium sample to measure changes during our orig-
inal counting process. These calibration processes will be men-
tioned in the text as before and after count processes. Various
point and composite calibration sources, whose well-known
gamma-ray energies are between 47 and 1837 keV, were provided
for energy calibration from Cekmece Nuclear Research Center
(IAEA 1364-43-2).
Analysis

The last file in the spectrum records included all photopeaks for
germanium isotopes which are given in three parts with Figs. 1–3.
The counting process was short for point sources and only one file
was recorded for each source of 133Ba, 109Cd, 57Co, 60Co, 137Cs, 54Mn,
22Na, 228Ac, 214Pb, 214Bi, and 208Tl. All photopeaks in the spectrums
were fitted with gaussian, skewed gaussian and a smoothed step
function by using the RadWare analysis program [48]. The fit
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Fig. 3. Photopeak spectrum of Germanium sample hitting detector channels in the
range of 9000 and 14,000.
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function deals also with background estimation under the main
peak. Therefore, the range of the fit must be large enough to take
account background distribution before and after the main peak.
In the study, the range and fit parameters was selected such a
way that the chi square value was as close to 1 as possible. The best
parameters estimated the background under the main peak
according to the tendency of background immediately before and
after the main peak. This program was developed for analysis of
gamma-ray data by David Radford, Physics Division at Oak Ridge
Laboratory. The fitting was performed for all photopeaks including
point sources and original germanium isotopes. The fit results pro-
vided us with the center channel numbers (centroid) and their
errors. The idea was to obtain polynomial formula to convert mea-
sured channel numbers to corresponding energy values. This was
managed with calibration sources whose radiation energies are
well-known in literature. Once a formula was determined with
Table 1
Centroid channel numbers of photopeaks from calibration sources spectrums for measurem
channel numbers ðCcÞ, errors on combined channel numbers ðrCc Þ and nudat values for re

Elements Cb rCb
Ca

133Ba 278.4092 0.0700 279.3383
133Ba 1580.2307 0.0132 1580.1599
133Ba 1857.2310 0.0078 1857.1554
133Ba 2002.3162 0.0229 2002.1321
109Cd 460.3572 0.0502 460.5771
57Co 638.1111 0.0229 637.9998
57Co 713.1731 0.0700 713.0144
60Co 6114.1455 0.0198 6113.9600
60Co 6943.7051 0.0218 6943.4561
137Cs 3449.4578 0.0099 3449.2446
54Mn 4351.6851 0.0461 4350.9526
22Na 6641.8135 0.0248 6641.4492
214Pb 1540.8563 0.0468 1539.6534
214Pb 1835.2681 0.0345 1835.9827
214Bi 3176.8098 0.0424 3176.9260
214Bi 5838.3228 0.1279 5838.0522
228Ac 4748.2461 0.0710 4749.2515
214Bi 9193.0752 0.1684 9193.4902
208Tl 3041.3301 0.0524 3040.1921
208Tl 13620.1924 0.1556 13620.4893
calibration sources, then the channel numbers found for germa-
nium isotopes were used to obtain corresponding energy values
whose decay processes are clearly separated from others. First of
all, combined channel numbers for each calibration source were
determined by taking the average of centroid values of the same
source for before and after count processes as in Eq. (7):

Cc ¼ ðCb þ CaÞ=2 ð7Þ
The errors on combined channel numbers were calculated by

using standard error propagation given in Eq. (8):

rCc¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
r2

Cb
þ r2

Ca
þ ðCb � CcÞ2 þ ðCa � CcÞ2

�
=2

�r
ð8Þ

Here, Cc , Cb, Ca, rcb , rca refers to combined channel number, channel
number of before count, channel number of after count, total errors
on channel numbers for before and after counts, respectively. The
resulting values are shown in Table 1 with the literature values of
corresponding energy values [49–59]. The combined channel num-
bers of calibration sources and their corresponding energy values
which are best in literature were put in a 2-D scatter histogram
to perform a best polynomial fit as shown in Fig. 4.

The fit results are shown in Table 2, where a0, a1 and a2 are the
parameters of the second order polynomial fit and cov01, cov02
and cov12 are the covariance matrix elements for the fit. In this
way, we obtained the following energy formula as in Eq. (9) as a
function of centroid channel numbers ðchÞ of photopeaks.

E ¼ a0 þ a1ðchÞ þ a2ðchÞ2 ð9Þ

The error on the energy value included errors on fit parameters,
covariance matrix elements [60–63] and errors on centroid chan-
nel numbers. Generally, if one takes energy equation as shown in
Eq. (10), then the error on the energy value could be written as
in Eq. (11) or in Eq. (12):

E ¼
Xn
i

aich
i ð10Þ

r2
E ¼

Xn
i

@E
@ai

� �2

r2
ai
þ 2

Xn
i

Xn
j>i

@E
@ai

� �
@E
@aj

� �
cov ij þ @E

@ch

� �2

r2
ch ð11Þ
ents of before ðCbÞ and after ðCaÞ the original sample (germanium) count, combined
lated energy levels ðENUðkeVÞÞ.

rCa Cc rCc ENUðkeVÞ
0.0632 278.8738 0.4693 53.1622
0.0121 1580.1953 0.0376 302.3950
0.0072 1857.1932 0.0385 356.0129
0.0196 2002.2242 0.0945 383.8485
0.0510 460.4672 0.1210 88.0336
0.0206 638.0555 0.0598 122.0607
0.0635 713.0938 0.1037 136.4736
0.0182 6114.0528 0.0947 1173.2280
0.0200 6943.5806 0.1262 1332.4920
0.0087 3449.3512 0.1070 661.6570
0.0492 4351.3189 0.3693 834.8480
0.0224 6641.6314 0.1837 1274.5370
0.0280 1540.2549 0.6027 295.2228
0.0206 1835.6254 0.3584 351.9321
0.0267 3176.8679 0.0681 609.3200
0.0857 5838.1875 0.1737 1120.2940
0.0566 4748.7488 0.5068 911.2040
0.1055 9193.2827 0.2506 1764.4910
0.0318 3040.7611 0.5706 583.1870
0.1038 13620.3409 0.1988 2614.5110



0 2000 4000 6000 8000 10000 12000 14000
0

500

1000

1500

2000

2500

3000

Equation
y = Intercept + B
1*x^1 + B2*x^2

Weight
Value Standard Error

nudat values for Intercept -0,44829 0,01219
nudat values for B1 0,19188 8,73194E-6
nudat values for B2 1,29411E-8 1,11208E-9

nu
da

t v
al

ue
s 

fo
r r

el
at

ed
 e

ne
rg

y 
le

ve
ls

 (k
eV

)

combined channel number

Fig. 4. Combined channel numbers for calibration point sources versus corre-
sponding energy values taken from literature with the best values. The continuous
line shows the second order polynomial fit.

Table 2
Calibration parameters for the second order polynomial fit E ¼ a0 þ a1Cc þ a2ðCcÞ2.
ra0 , ra1 and ra2 are errors on fit parameters.

Fit parameters Values Error(rai )

a0 �0.448291 0.0121913
a1 0.191881 8.73194E�06
a2 1.29411E�08 1.112085E�09
cov01 �9.4628E�08 –
cov02 1.07321E�11 –
cov03 �9.40348E�15 –
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Table 3
Calibration parameters for the fit belonging to not the combined centroids of before
and after source spectrums but to the lowest peak values among both spectrums for
each sources.

Fit parameters Values Error(rai )

a0 �0.376095 0.00428854
a1 0.191911 2.82586E�06
a2 7.37E�08 3.66321E�10
cov01 �1.08176E�08 –
cov02 1.24075E�12 –
cov12 1.24075E�12 –
r2
E ¼

Xn
i

@E
@ai

� �2

r2
ai
þ 2

Xn
i

Xn
j>i

@E
@ai

� �
@E
@aj

� �
corij þ @E

@ch

� �2

r2
ch ð12Þ

where ch represents channel number and ai are constants. Then,
if one applies this to our energy equation of Eq. (9) and use
Table 4
The photopeak results for the germanium sample count. The channel numbers from the d
obtained with Eq. (12) ðEðkeVÞÞ, error on energy values ðrEÞ and literature values (nudat).

Elements Centroid Width of the fit function

75Ge 1037.0704 5.13
75Ge 1381.1466 4.47
75Ge 2184.8533 5.58
75Ge 2443.7461 6.2
69Ge 1662.6044 5.44
69Ge 2993.0281 6.94
69Ge 4544.2114 8.43
69Ge 9852.7539 13.43
69Ge 10543.2314 13.4
covariance matrix elements, Eq. (13) is obtained for error calcula-
tion on energy values including statistical and systematical errors:

r2
E ¼ r2

a0
þ C2

cr
2
a1
þ C4

cr
2
a2
þ 2ððchÞcov01þ ch2cov02

þ ch3cov12Þ þ ða1 þ 2a2chÞ2r2
ch ð13Þ

The total error is caused by several sources. The uncertainty in
peak position and energy calibrations leads to statistical errors.
Besides, channel drift during the experiment causes systematical
errors. Since there is difference in peak positions between before
and after source spectrums, the additional conservative error was
considered. For this, the polynomial fit was redone by this time
using not combined channel numbers of calibration spectrums
but taking the lowest one among before and after counts for each
sources. The new fit parameters are shown in Table 3. This did not
break up linearity much but the constant changed significantly
representing uncertainty of shift on peak positions during the
experiment. The difference between energy values calculated with
two different fit parameters was used as an additional error. The
quadratic summation of both errors, which are calculated accord-
ing to Eq. (13) and along with fit parameters, was the total error
for each channel analysed.

Results and discussion

The photopeak results for the germanium sample count are
shown in Table 4. The channel numbers from the detector (cen-
troids), the width values of the fit functions, corresponding energy
values obtained with Eq. (12), total errors, and Nuclear Data
Table (nudat) values of the related energy transitions belonging
to the decay radiations of 75Ge and 69Ge are listed [64,65]. As
shown in the table, all nine results are in agreement with literature
values within error range. Two energy values 198.6 keV and 264.6
keV are the same as with corresponding literature values. There is
0.02 keV difference between our measurement and literature value
for the energy measured as 3.61 keV but a better error is intro-
duced in the presented study. The literature values of 419.1 keV
and 468.8 keV energies were measured as 418.8 and 468.5 keV in
the presented study, respectively. These energies are nearly in
agreement in error ranges but better errors were introduced in
our study compared to literature ones. The 574.11 keV energy in
literature with 0.10 keV error is 0.13 keV higher than the measured
one with 0.11 keV error. The measured value of 871.77 keV with
0.10 keV error is 871.98 keV in literature with 0.10 keV error. The
measured 1891.36 keV energy with 0.18 keV error is 0.12 keV
lower than that of literature value with 0.10 keV error matching
in error ranges easily but with worse error on measured site. For
the last, the 2023.65 keV literature value differ with the presented
value by 0.39 keV but they are in agreement by considering 0.20
keV and 0.24 keV errors. In summary, the presented experiment
which has offline nature for determining energy values gives very
etector (centroid), the width values of the fit functions, corresponding energy values

ENUðkeVÞ rNU EðkeVÞ rE

198.6 0.1 198.56 0.098
264.6 0.1 264.59 0.103
419.1 0.2 418.85 0.11
468.8 0.2 468.54 0.11
318.63 0.20 318.61 0.107
574.11 0.10 573.97 0.11
871.98 0.10 871.77 0.094
1891.48 0.10 1891.36 0.18
2023.65 0.20 2024.04 0.24
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close results to literature values. Finally, in the light of our exper-
iment results, it could be concluded that this type of analysis could
also give good results in addition to the methods which have
online natures.
Conclusion

In this study, a clinic linac was used producing bremsstrahlung
photons with endpoint energy of 18 MeV. It could be stated that
such systems could be used in nuclear physics experiments. This
experiment has offline nature, so it is not considered for measuring
prompt photons once they are produced. The analysis took place
once all data had been collected during the experiment. The results
of transition energies presented here were obtained offline by tak-
ing account of original sample count and counts from calibration
source samples taken immediately before and after the original
germanium counting process. It can be seen that the analysed
and presented transition values agree with the corresponding liter-
ature values in error ranges. When compared with literature, some
energy results are very close including errors, some are again very
close and have better errors presented in this study. Finally, it
could be stated that this work gives a contribution to nuclear data.
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