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Abstract
3-Aminoquinazolinone–phosphine proligands (5a–e) and their Ru(II) complexes (6a–e) were prepared and characterized 
by NMR (1H, 13C, 31P{1H}), FTIR and microanalysis. The 3-aminoquinazolinone–phosphine ligands were found to coor-
dinate with the Ru(II) center via their phosphorus and nitrogen atoms. The Ru(II) complexes were applied as catalysts for 
the hydrogenation and transfer hydrogenation of prochiral ketones. The results showed that these complexes are efficient 
transfer hydrogenation catalysts.

Introduction

Ruthenium(II) complexes and their catalytic applications are 
important in the synthesis of biologically active compounds 
for pharmaceutical, natural and industrial applications [1]. 
Hydrogenation is one of these applications and serves as a 
useful method for the reduction of carbonyl compounds to 
their corresponding secondary alcohols. Hydrogenation is 
generally performed by two methods [2–4]. The first pro-
cedure uses high pressure with molecular  H2 [5], while 
the second is performed using isopropyl alcohol or formic 
acid as the hydrogen source [6]. The second method is eco-
friendly, is safer and shows high selectivity compared to 
hydrogenation methods involving high pressure. The hydro-
genation reactions are carried out in the presence of transi-
tion metal catalysts, whose efficiency is a critical factor in 
securing high product yields. Phosphine ligands are known 
to increase the catalytic activity of hydrogenation reactions 
[7–9]. In particular, after Noyori’s research on hydrogena-
tion with the chiral  P2N2 ligand, researchers have continued 
to explore the use of ligands which combine soft phospho-
rus and hard nitrogen atoms. Such PN-based ligands and 

their metal complexes, especially ruthenium complexes, act 
as catalysts and are applied in hydrogenation and transfer 
hydrogenation reactions to reduce or saturate organic com-
pounds [10–13].

In the present study, 3-aminoquinazolinones were synthe-
sized from α-hydroxy acids or α-amino acids, as described 
in the literature [14], and 3-aminoquinazolinone–phosphine 
proligands were obtained by the reactions of 2-(diphe-
nylphosphino)benzaldehyde with these 3-aminoquina-
zolinones. The corresponding Ru(PN)2Cl2 (6a–e) complexes 
were synthesized from these iminophosphine proligands 
(5a–e). Spectroscopic analysis showed that the 3-amino-
quinazolinone–phosphine proligands coordinate the Ru(II) 
center via their phosphorus and nitrogen atoms. All the 
Ru(PN)2Cl2 complexes were investigated as catalysts for 
hydrogenation and transfer hydrogenation (TH) reactions 
as catalysts.

Results and discussion

3-Aminoquinazolinones (4a–e) were prepared from L-lactic 
acid 1a,  L-mandelic acid 1b, L-valine 1c, L–t-leucine 1d 
and  L-phenyl alanine 1e via a three step synthesis [15, 16] 
(Scheme 1).

The 3-aminoquinazolinone–phosphine proligands 
(5a–e) were synthesized by reaction of 2-(diphenylphos-
phino)benzaldehyde with 3-aminoquinazolinones (5a–e) as 
shown in Scheme 2. They were characterized by elemental 
analysis, FTIR, and 1H, 13C, 31P{1H} NMR spectroscopy. 
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In the IR spectra of the free proligands, peaks due to the 
ν(N–H) and ν(C = O) stretching vibrations of the amines and 
aldehydes were absent, being replaced by the imine group 
ν(N = CH) stretching at 1607–1603 cm−1 (1607 (5a), 1603 
(5b), 1607 (5c), 1606 (5d) and 1606 (5e)  cm−1). The cor-
responding ν(N = CH) stretching vibrations of the Ru(II) 
complexes were observed at 1603–1569 cm−1, indicating 
that Ru is coordinated by the imine nitrogen [17]. The P-Ph 
bands for the Ru(II) complexes (6a–e) were observed at 
1436–1472 cm−1 [18, 19]. In the 1H NMR spectra of the 
proligands, multiplets at 8.56–7.00  ppm were assigned 
to the phenyl protons. The azomethine protons (HC = N) 
appeared at 9.88 (5a), 9.59 (5b), 9.90 (5c), 10.00 (5d) and 
9.92 (5e) ppm as a doublet, with a coupling constant of 
around JPH = 6.0 Hz; the peak was shifted downfield to 
9.83–10.90 ppm as a singlet after coordination to the Ru(II) 
center. Peaks at different values around at 5.30–1.62 ppm 
were assigned to the OH protons of both the free proligands 
and their complexes [20]. In the 13C NMR spectra, azome-
thine carbons of the proligands were observed between 
165.0 and 166.0 ppm, while the aromatic carbon signals 
were observed at 159–117 ppm. The 31P NMR spectra of 
all of these 3-aminoquinazolinone–phosphine proligands 

show a single peak, shifted upfield compared to 2-(diphe-
nylphosphino)benzaldehyde at − 15.35 (5a), − 16.26 (5b), 
− 16.18 (5c), − 16.35 (5d) and − 15.44 (5e) ppm [21, 22]. 
The 31P NMR spectra of the Ru(PN)Cl2 complexes were 
observed at 59.60 (6a), 59.61 (6b), 52.57 (6c), 61.00 (6d) 
and 59.62 ppm (6e). Hence, the 31P NMR peaks were shifted 
downfield upon complexation, consistent with coordination 
of the P atoms to the metal [23, 24]. Overall, the spectro-
scopic data clearly showed that the ligands do not coordinate 
to the metal via the aliphatic hydroxide, which would confer 
chirality on the complexes, despite the fact that the reactions 
were carried out at different temperatures with several bases. 
On the other hand, from the 31P NMR spectra of 6a–e, the 
peaks observed at 26.71–26.97 ppm showed that the phos-
phorus was partially oxidized during the purification of the 
compounds or the NMR measurements. 

Transfer hydrogenation reactions

For a series of complexes, both the chemical nature of the 
substituents and their positions can influence their cata-
lytic activities. Therefore, a series of Ru(II) complexes, 
substituted with both aliphatic and aromatic groups having 
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different electronic and steric effects on the 3-aminoquina-
zolinone skeleton, were investigated in transfer hydrogena-
tion reactions. To evaluate the efficiency of these Ru(II) 
complexes (6a–e) for transfer hydrogenation reactions, we 
have chosen acetophenone as a model substrate. Normally, in 
a typical transfer hydrogenation reaction, a base is used for 
generation of a highly active dihydride complex. This serves 
to deprotonate the isopropyl alcohol, resulting in an alkoxide 
ion that undergoes β-elimination at the Ru–H active center 
[2]. In order to determine the effect of base on the transfer 
hydrogenation reaction, we examined both inorganic and 
organic bases (NaOH,  KOtBu and  Et3N). We did not obtain 
significant yields with  KOtBu or  Et3N; however, NaOH gave 
acceptable yields. When the reaction was carried out in the 
absence of a base, no products were obtained.

The reaction temperature is an important parameter for 
the transfer hydrogenation of prochiral ketones, so we also 
tested different temperatures (82, 60, 40 and 25 °C). For the 
reaction with NaOH in 2-propanol, as the temperature was 
decreased from 82 °C to room temperature, both the yield 
and conversion decreased dramatically, such that poor results 
were obtained at low temperatures. Subsequent experiments 
were therefore carried out at 82 °C (Scheme 3). 

Our first investigation was into the reduction of bromo- 
and chloro-acetophenones with electron-withdrawing groups 
to secondary alcohols. Bromo-acetophenones were reduced 
to the corresponding secondary alcohols in good yields at 
82 °C (Table 1, entries 4, 5 and 6). The same situation was 
observed with chloro-acetophenones, as shown in Table 1 
entries 7–9. The electron-withdrawing effect of these groups 
reduces the electron density on the carbonyl group, increas-
ing the affinity of the active ruthenium center for the sub-
strate and so accelerating the catalytic reaction. As expected, 
the transfer hydrogenation of acetophenones with ring acti-
vating methyl and methoxy groups on the aromatic ring gave 
moderate yields (Table 1, entries 10 and 11). It can be con-
cluded that electron-donating groups on the aryl ring of the 
ketones tend to slow the catalytic hydride transfer [2, 25].

Hydrogenation reactions

The Ru(II) complexes (6a–e) were also investigated for the 
hydrogenation of various acetophenones. Preliminary opti-
mization of the reaction conditions was investigated for the 
hydrogenation of acetophenone. The system was initially 

investigated under 10 bar  H2 pressure for 24 h using 1% mol 
of complex 6a. The results are presented in Table 2.

The use of ethanol or isopropanol as solvent failed to 
achieve a significant conversion. However, when metha-
nol was used as solvent, the activity of the catalysts was 
increased, which can be explained by the higher polarity 
(εEtOH = 25, εiPrOH = 20 and εMeOH = 33) [26]. As given 
in Table 2, under 10 bar hydrogen pressure, the reduction 
of acetophenone to secondary alcohol gave very low yield. 
Therefore, in order to improve the yield, the hydrogen pres-
sure was increased to 40 bar. Herein, we chose a substrate to 
catalyst (S/C) ratio of 100/1 and the racemic products were 
analyzed by GC (Table 3). 

As shown in Table 3, different yields were obtained from 
the hydrogenation of acetophenone (72%), 2-methoxyaceto-
phenone (99 and 97%) and 3-methoxyacetophenone (95%, 
entries 4, 6, 10 and 12) under 40 bar  H2 pressure. We con-
clude that long reaction times and high pressures of  H2 are 
required for optimum yields.

Experimental

Materials and methods

All reactions were carried out under an inert atmosphere 
using conventional Schlenk glassware. Solvents were dried 
using established procedures and then immediately distilled 
under argon prior to use [27]. The 3-aminoquinazolinones 
[15, 16] and 2-(diphenylphosphino)benzaldehyde [28] were 
prepared as described in the literature. Microanalyses were 
obtained with a LECO CHNS 932 instrument. IR spectra 
were recorded with a PerkinElmer RX1 spectrophotome-
ter in the range between 4000 and 650 cm−1. All 1H NMR 
(400.1 MHz) and 31P{1H} NMR (162.0 MHz) spectra were 
recorded at 25 °C with DMSO-d6 and  CDCl3 on a Bruker 
NMR spectrometer. The 13C NMR spectra were taken on 
a Varian Mercury 100.6  MHz NMR spectrometer. The 
31P{1H} NMR spectra were recorded with complete pro-
ton decoupling and referenced with 85%  H3PO4 as external 
standard. The reaction products were analyzed with a Perki-
nElmer Clarus 500 series gas chromatograph equipped with 
a flame ionization detector and a 30 m × 0.25 mm × 0.25 μm 
film thickness β-Dex capillary column. Thin-layer chroma-
tography was used for monitoring the reactions.

P r e p a r a t i o n  o f  3 ‑ ( 2 ‑ ( d i p h e n y l p h o s p h i n o )
benzylideneamino)‑2‑(1‑hydroxyethyl) quinazolin‑4(3H)‑one 
(5a) A mixture of p-toluenesulfonic acid (10 mg), 2-(diphe-
nylphosphino)benzaldehyde (282 mg, 0,974 mmol) and 
3-amino-2-(S)-1-hydroxyethyl)-3H-quinazolin-4-one 
(100 mg, 0,487 mmol) in ethanol (10 mL) and heated at 
120 °C for 12 h. The reaction was cooled and analyzed by 
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Scheme  3  Catalytic transfer hydrogenation of acetophenone deriva-
tives
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Table 1  Transfer hydrogenation of acetophenones with Ru(II) catalysts

6a-e

IPA, NaOH

OHO

R R

Entry Substrate                    Product
Yieldc(%) (TON)d

6a 6b 6c 6d 6e

1
O OH

87 (435) 78 (390) 82 (410) 98 (490) 96 (480)

2
O OH

44a (220) 53a (265) 39a (195) 66a (330) 84a (420)

3

O OH

17b (85) 13b (65) 26b (130) 38b (190) 34c (170)

4
OBr OHBr

92 (460) 97 (485) 96 (480) 98 (490) ≥99 (495)

5

O

Br

OH

Br

98 (490) 98 (490) 98 (490) ≥99 (495) ≥ 99 (495)

6

Br

97(485) 96 (480) 82 (410) 97 (485) 98 (490)

O OH

Br

7
O

Cl

OH

Cl

≥99 (495) ≥99 (495) ≥99 (495) ≥99 (495) ≥99 (495)

8

O

Cl

OH

Cl

99 (495) 98 (490) 96 (480) 99 (495) 98 (490)

9

O

Cl

OH

Cl

96 (480) 95 (475) 97 (485) 99 (495) 99 (495)

10
O OH

≤5 (25) 6 (30) 8 (40) 12 (60) 19 (95)

11

O OH

41(205) 39 (195) 60 (300) 68 (340) 78 (390)
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TLC [ethylacetate:hexane/1:5]. The solvent was evaporated 
under reduced pressure until dryness and the residue was 
dissolved in  CH2Cl2. The solution was washed with  NaHCO3 
followed by  H2O and the organic phase was dried with 
 Na2SO4. The crude product, obtained by evaporation of the 
solvent, was purified by chromatography on silica gel using 
1:9 ethylacetate:hexane as an eluent. Yield 101 mg (44%), 
m.p.: 130–131 °C (dec.). 1H NMR (400.2 MHz,  CDCl3): δ 
(ppm) 9.88 (d, 1H, JPH = 5.8 Hz, HC = N), 8.12 (m, 2H, 
ArCH), 7.52 (m, 2H, ArCH), 7.44–7.21 (m, 12H, ArCH), 
6.84 (m, 2H, ArCH), 4.84 (m, 1H, CH), 4.35 (s, OH), 1.34 
(d, 3H, J = 6.4 Hz,  CH3). 13C NMR (100.6 MHz,  CDCl3): 
δ (ppm) 165.5 (d, JPC = 19.2 Hz, N = CH), 158.7–121.6 
(Ar), 65.4 (CH), 22.1  (CH3). 31P{1H} NMR (162.0 MHz, 
 CDCl3): δ (ppm) − 15.35 (s). FTIR (KBr,  cm−1): 3451 (OH); 
1687 (C = O); 1607 (C = N); 1435 (P-Ph). Anal. calcd. for 
 C29H24N3O2P: C, 72.95; H, 5.07; N, 8.80%. Found: C, 73.33; 
H, 5.29; N, 8.47%.

The other proligands 5b–5e were prepared by the same 
procedure.

Table 1  (continued)

12

O

OCH3

OH

OCH3

76 (380) 73 (365) 92 (460) 90 (450) 92 (460)

13
O

H3CO

OH

H3CO

8 (40) 6 (30) 23 (115) 33 (165) 23 (115)

Reaction conditions: substrate (2 mmol), catalyst (0.004 mmol), IPA (3 mL), NaOH (0.1 mmol), 24 h. 
aBase: KOtBu
bBase: Et3N
c GC
d

yield of the corresponding alcohol
TON: mol of product/mol of catalyst

Entry Substrate                    Product
Yieldc(%) (TON)d

6a 6b 6c 6d 6e

Table 2  Influence of solvents and temperature on the reduction of 
acetophenone with 6aa

a Reaction conditions: acetophenone (2  mmol), 6a (0.1  mmol), solv. 
(3 mL),  H2:10 bar, 24 h. NR: no reaction
b Products were analyzed by GC

Entry Solvent T (°C) Conv. (%)b

1 Methanol 50 10
2 Methanol 60 27
3 Methanol 80 68
4 iPrOH 60 NR
5 Ethanol 80 3

Table 3  Hydrogenation reaction of acetophenone and  derivativesa

a Reaction conditions: substrate (2  mmol), cat. (0.004  mmol), 24  h. 
NR: no reaction
b GC yield of the corresponding alcohol

Entry Catalyst Substrate Yield (%)b

10 bar  H2 40 bar  H2

1 6a

 

NR 5

2 6b NR ≤ 5
3 6c 15 45
4 6d 46 72
5 6e 15 16
6 6a

 

16 99

7 6b 9 9
8 6c NR ≤ 5
9 6d ≤ 5 59
10 6e 80 97
11 6a

 

52 58

12 6b 45 95
13 6c NR 69
14 6d 79 77
15 6e 60 69



290 Transition Metal Chemistry (2018) 43:285–292

1 3

3‑(2‑(Diphenylphosphino)benzylideneamino)‑2‑(hydroxy(ph
enyl)methyl)quinazolin‑4(3H)‑one (5b) Yield 74 mg (37%), 
m.p.: 161–163 °C (dec.). 1H NMR (400.2 MHz,  CDCl3): 
δ (ppm) 9.59 (d, 1H, JPH = 6.01 Hz, HC = N), 8.20–7.00 
(m, ArH, 23H), 4.20 (s, 1H, CH), 1.62 (s, OH). 13C NMR 
(100.6 MHz,  CDCl3): δ (ppm) 165.3 (d, JPC = 19.2 Hz, 
N = CH), 145.50–117.0 (Ar), 68.4 (CH). 31P{1H} NMR 
(162.0 MHz,  CDCl3): δ (ppm) − 16.26 (s). FTIR (KBr, 
 cm−1): 3301 (OH); 1682 (C = O); 1603 (C = N); 1432 (P–
Ph). Anal. calcd. for  C34H26N3O2P: C, 75.68; H, 4.86; N, 
7.79%. Found: C, 76.73; H, 5.09; N, 8.47%.

3‑(2‑(Diphenylphosphino)benzylideneamino)‑2‑(1‑hydrox
y‑2‑methylpropyl)quinazolin‑4(3H)‑one (5c) Yield 65 mg 
(30%), m.p.: 118–120 °C (dec.). 1H NMR (400.2 MHz, 
 CDCl3): δ (ppm) 9.90 (d, 1H, JPH = 6.00 Hz, HC = N), 
8.32–7.00 (m, 18H, ArH), 4.24 (d, J = 7.6 Hz, 1H, CH), 2.68 
(m, 1H, CH), 1.62 (br, OH), 1.80 (s, 6H,  CH3). 13C NMR 
(100.6 MHz,  CDCl3): δ (ppm) 165.5 (d, JPC = 19.2 Hz, 
N = CH), 158.7–121.6 (Ar), 65.4 (CH), 23.0  (CH3). 31P{1H} 
NMR (162.0 MHz,  CDCl3): δ (ppm) − 16.18 (s). FTIR 
(KBr,  cm−1): 3426 (OH); 1683 (C = O); 1607 (C = N); 1434 
(P–Ph). Anal. calcd. for  C31H28N3O2P: C, 73.65; H, 5.58; N, 
8.31%. Found: C, 74.45; H, 5.86; N, 8.86%.

3‑(2‑(Diphenylphosphino)benzylideneamino)‑2‑(1‑hydro
xy‑2,2‑dimethylpropyl)quinazolin‑4(3H)‑one (5d) Yield 
138 mg (66%), m.p.: 144 °C (dec.). 1H NMR (400.2 MHz, 
 CDCl3): δ (ppm) 10.00 (d, 1H, JPH = 6.24 Hz, HC = N), 
8.20–7.10 (m, 18H, ArH), 4.91 (s, OH), 3.63 (s, 1H, CH), 
0.82 (s, 9H,  CH3). 13C NMR (100.6 MHz,  CDCl3): δ (ppm) 
165.0 (d, JPC = 19.2 Hz, N = CH), 159.7–127.0 (Ar), 73.0 
(CH), 23.0  (CH3). 31P{1H} NMR (162.0 MHz,  CDCl3): δ 
(ppm) − 16.35 (s). FTIR (KBr,  cm−1): 3423 (OH); 1684 
(C = O); 1606 (C = N); 1434 (P–Ph). Anal. calcd. for 
 C32H30N3O2P: C, 73.97; H, 5.82; N, 8.09%. Found: C, 73.93; 
H, 6.09; N, 8.43%.

3‑(2‑(Diphenylphosphino)benzylideneamino)‑2‑(1‑hydrox
y‑2‑phenylethyl)quinazolin‑4(3H)‑one (5e) Yield 140 mg 
(71%), m.p.: 156 °C (dec.). 1H NMR (400.2 MHz,  CDCl3): 
δ (ppm) 9.92 (d, 1H, JPH = 5.96 Hz, HC = N), 8.25–7.13 (m, 
23H, ArH), 4.91 (d, 1H, J = 9.7 Hz, CH), 4.24 (s, OH), 3.74 
(d, 1H, J = 9.7 Hz, CH). 13C NMR (100.6 MHz,  CDCl3): 
δ (ppm) 166.0 (d, JPC = 19.2 Hz, N = CH), 139.0–126.0 
(Ar), 71.4 (CH), 41.0  (CH3). 31P{1H} NMR (162.0 MHz, 
 CDCl3): δ (ppm) − 15.44 (s). FTIR (KBr,  cm−1): 3423 (OH); 
1684 (C = O); 1606 (C = N); 1434 (P–Ph). Anal. calcd. for 
 C35H28N3O2P: C, 75.94; H, 5.10; N, 7.59%. Found: C, 76.30; 
H, 5.69; N, 8.47%.

Preparation of Ru(II) complexes (6a–e)

Complex 6a

To a solution of [Ru(p-cymene)Cl2]2 (306 mg, 1 mmol) in 
dry toluene (10 mL), compound 5a (960 mg, 2.1 mmol) 
was added. The mixture was stirred for 12 h at reflux. The 
solvent was removed under reduced pressure until dry-
ness, giving a dark red solid, which was crystallized from 
 CH2Cl2/hexane mixture. Yield 1.015 g (90%), mp.: 191 °C 
(dec.). 1H NMR (400.2 MHz,  CDCl3): δ (ppm) 9.87 (s, 2H, 
N = CH), 7.89–7.28 (m, ArH, 36H), 5.30 (s, OH), 4.93 (m, 
2H, CH), 2.70 (s, 6H,  CH3). 31P{1H} NMR (162.0 MHz, 
 CDCl3): δ (ppm) 59.60 (s). FTIR (KBr,  cm−1): 3426 (OH); 
1678 (C = O); 1592 (C = N); 1436 (P–Ph). Anal. calcd. for 
 C58H48Cl2N6O4P2Ru: C: 61.81, H: 4.29, N: 7.46%. Found: 
C: 62.34, H: 4.09, N: 7.02%.

The other complexes 6b–d were prepared by the same 
procedure.

Complex 6b

Yield 913 mg (73%), m.p.: 210 °C (dec.), dark red solid. 
1H NMR (400.2 MHz,  CDCl3): δ (ppm) 10.15 (s, 2H, 
N = CH), 8.56–7.28 (m, ArH, 46H), 5.17 (s, 2H, CH), 
1.67 (s, OH). 31P{1H} NMR (162.0  MHz,  CDCl3): δ 
(ppm) 59.61 (s). FTIR (KBr,  cm−1): 3386 (OH); 1681 
(C = O); 1592 (C = N); 1468 (P–Ph). Anal. calcd. for 
 C68H52Cl2N6O4P2Ru: C: 65.28, H: 4.19, N: 6.72%. Found: 
C: 66.02, H: 4.30, N: 6.10%.

Complex 6c

Yield 993 mg (84%), m.p.: 243 °C (dec.), brown solid. 
1H NMR (400.2 MHz,  CDCl3): δ (ppm) 10.15 (s, 2H, 
N = CH), 8.29–7.28 (m, ArH, 36H), 4.51 (s, 2H, CH), 4.51 
(s, OH), 3.48 (m, 2H, CH), 1.91 (s, 12H,  CH3). 31P{1H} 
NMR (162.0 MHz,  CDCl3): δ (ppm) 52.57 (s). FTIR (KBr, 
 cm−1): 3418 (OH); 1680 (C = O); 1603 (C = N); 1468 
(P–Ph). Anal. calcd. for  C62H56Cl2N6O4P2Ru: C: 62.94, 
H: 4.77, N: 7.10%. Found: C: 63.85, H: 4.70, N: 6.90%.

Complex 6d

Yield 690 mg (57%), m.p.: 248 °C (dec.), brown solid. 
1H NMR (400.2 MHz,  CDCl3): δ (ppm) 10.90 (s, 2H, 
N = CH), 8.30–7.07 (m, ArH, 36H), 5.17 (s, 2H, CH), 4.45 
(s, OH), 1.90 (s, 18H,  CH3). 31P{1H} NMR (162.0 MHz, 
 CDCl3): δ (ppm) 61.00 (s). FTIR (KBr,  cm−1): 3426 (OH); 
1657 (C = O); 1602 (C = N); 1472 (P–Ph). Anal. calcd. 
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for  C64H60Cl2N6O4P2Ru: 63.47, H:4.99, N:6.94%. Found: 
C: 63.95, H: 4.97, N: 6.15%.

Complex 6e

Yield 844 mg (66%), m.p.: 230 °C (dec.), brown solid. 1H 
NMR (400.2 MHz,  CDCl3): δ (ppm) 9.83 (s, 2H, N = CH), 
8.40–7.28 (m, ArH, 46H), 4.57 (m, 4H,  CH2), 3.47 (m, 2H, 
CH), 3.15 (s, OH). 31P{1H} NMR (162.0 MHz,  CDCl3): 
δ (ppm) 59.62 (s). FTIR (KBr,  cm−1): 3429 (OH); 1672 
(C = O); 1569 (C = N); 1468 (P–Ph). Anal. calcd. for 
 C70H56Cl2N6O4P2Ru: C: 65.73, H: 4.41, N: 6.57%. Found: 
C: 66.21, H: 4.47, N: 6.24%.

General procedure for transfer hydrogenation 
reactions

A mixture of the Ru(II) complex (0.004 mmol), 2-propanol 
(3  mL), NaOH (0.1  mmol) and the substrate (2  mmol, 
substrate:catalyst/500:1) was introduced into a Schlenk 
tube under an argon atmosphere. The resulting solution was 
heated at 82 °C for 24 h. The solution was cooled down 
and then concentrated to dryness under reduced pressure. 
The residue was purified by flash chromatography (ethyl 
acetate:hexane/1:10). The products were analyzed by GC.

General procedure for hydrogenation reactions

In a typical experiment, a stainless steel reactor was charged 
with acetophenone (2 mmol) and solvent (2 mL), followed 
by the required catalyst (1% mol, substrate:catalyst/100:1) 
under an  N2 atmosphere. The reaction mixture was then 
stirred at the required temperature for the specified time 
under 10 or 40 bars pressure of  H2. After the completion 
of the reaction, the mixture was cooled and extracted with 
diethyl ether (3 × 20 mL). Yields were determined by GC.

Conclusion

A series of Ru(II) complexes with 3-aminoquina-
zolinone–phosphine (PN donor) ligands have been synthe-
sized and characterized by spectroscopic techniques. The 
ligands were shown to coordinate with the Ru(II) center 
via their phosphorus and nitrogen atoms. The Ru(PN)
Cl2 complexes act as catalysts for both hydrogenation and 
transfer hydrogenation reactions of ketones in moderate 
to good yields. The use of a variety of ligands with dif-
ferent substituents (–Me, –iPr, –tBu, –Bn and –Ph) was 
investigated for the Ru(II) catalyzed hydrogenation and 
transfer hydrogenation reactions; however, the catalytic 
activities were not significantly affected by the substituents. 
This is probably because the substituents are remote from 

the ruthenium active centers, such that the nature of the sub-
stituents did not contribute to the catalytic performance.
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