CURVES OF CONSTANT BREADTH ACCORDING TO TYPE-2 BISHOP FRAME IN E^{3}

HÜLYA GÜN BOZOK, SEZIN AYKURT SEPET, AND MAHMUT ERGÜT

Abstract

In this paper, we study the curves of constant breadth according to type-2 Bishop frame in the 3-dimensional Euclidean Space E^{3}. Moreover some characterizations of these curves are obtained.

1. Introduction

In 1780, L. Euler studied curves of constant breadth in the plane [3]. Thereafter, this issue investigated by many geometers [2, 4, 12]. Constant breadth curves are an important subject for engineering sciences, especially, in cam designs [17]. M. Fujiwara introduced constant breadth for space curves and surfaces [4]. D. J. Struik published some important publications on this subject [16]. O. Kose expressed some characterizations for space curves of constant breadth in Euclidean 3 -space[10] and M. Sezer researched space curves of constant breadth and obtained a criterion for these curves [15]. A. Magden and O. Kose obtained constant breadth curves in Euclidean 4-space [11]. Characterizations for spacelike curves of constant breadth in Minkowski 4-space were given by M. Kazaz et al. [9]. S. Yilmaz and M. Turgut studied partially null curves of constant breadth in semi-Riemannian space [18]. The properties of these curves in 3-dimensional Galilean space were given by D. W. Yoon [20]. H. Gun Bozok and H. Oztekin investigated an explicit characterization of mentioned curves according to Bishop frame in 3-dimensional Euclidean space [5]. The curve of constant breadth on the sphere studied by W. Blaschke [2]. Furthermore, the method related to the curves of constant breadth for the kinematics of machinery was given by F. Reuleaux [14].
L. R. Bishop defined Bishop frame, which is known alternative or parallel frame of the curves with the help of parallel vector fields [1]. Then, S. Yilmaz and M. Turgut examined a new version of the Bishop frame which is called type-2 Bishop frame [19]. Thereafter, E. Ozyilmaz studied classical differential geometry of curves according to type-2 Bishop trihedra [13].

[^0]In this paper, we used the theory of the curves with respect to type-2 Bishop frame. Then, we gave some characterizations for curves of constant breadth according to type-2 Bishop frame.

2. Preliminaries

The standard flat metric of 3 -dimensional Euclidean space E^{3} is given by

$$
\begin{equation*}
\langle,\rangle: d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2} \tag{2.1}
\end{equation*}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of E^{3}. For an arbitrary vector x in E^{3}, the norm of this vector is defined by $\|x\|=\sqrt{\langle x, x\rangle} . \alpha$ is called a unit speed curve, if $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=1$. Suppose that $\{t, n, b\}$ is the moving Frenet-Serret frame along the curve α in E^{3}. For the curve α, the Frenet-Serret formulae can be given as

$$
\begin{align*}
t^{\prime} & =\kappa n \\
n^{\prime} & =-\kappa t+\tau b \tag{2.2}\\
b^{\prime} & =-\tau n
\end{align*}
$$

where

$$
\begin{aligned}
& \langle t, t\rangle=\langle n, n\rangle=\langle b, b\rangle=1 \\
& \langle t, n\rangle=\langle t, b\rangle=\langle n, b\rangle=0
\end{aligned}
$$

and here, $\kappa=\kappa(s)=\left\|t^{\prime}(s)\right\|$ and $\tau=\tau(s)=-\left\langle n, b^{\prime}\right\rangle$. Furthermore, the torsion of the curve α can be given

$$
\tau=\frac{\left[\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]}{\kappa^{2}} .
$$

Along the paper, we assume that $\kappa \neq 0$ and $\tau \neq 0$.
Bishop frame is an alternative approachment to define a moving frame. Assume that $\alpha(s)$ is a unit speed regular curve in E^{3}. The type-2 Bishop frame of the $\alpha(s)$ is expressed as [19]

$$
\begin{align*}
N_{1}^{\prime} & =-k_{1} B \\
N_{2}^{\prime} & =-k_{2} B \tag{2.3}\\
B^{\prime} & =k_{1} N_{1}+k_{2} N_{2}
\end{align*}
$$

The relation matrix may be expressed as

$$
\left[\begin{array}{l}
t \tag{2.4}\\
n \\
b
\end{array}\right]=\left[\begin{array}{ccl}
\sin \theta(s) & -\cos \theta(s) & 0 \\
\cos \theta(s) & \sin \theta(s) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
N_{1} \\
N_{2} \\
B
\end{array}\right]
$$

where $\theta(s)=\int_{0}^{s} \kappa(s) d s$. Then, type-2 Bishop curvatures can be defined in the following

$$
\begin{gathered}
k_{1}(s)=-\tau(s) \cos \theta(s), \\
k_{2}(s)=-\tau(s) \sin \theta(s) .
\end{gathered}
$$

On the other hand,

$$
\theta^{\prime}=\kappa=\frac{\left(\frac{k_{2}}{k_{1}}\right)^{\prime}}{1+\left(\frac{k_{2}}{k_{1}}\right)^{2}}
$$

The frame $\left\{N_{1}, N_{2}, B\right\}$ is properly oriented, τ and $\theta(s)=\int_{0}^{s} \kappa(s) d s$ are polar coordinates for the curve α. Then, $\left\{N_{1}, N_{2}, B\right\}$ is called type-2 Bishop trihedra and k_{1}, k_{2} are called Bishop curvatures.

The characterizations of inclined curves in E^{n} is given [7] and [8] as follows
Theorem 1. α is an inclined curve in $E^{n} \Leftrightarrow \sum_{i=1}^{n-2} H_{i}^{2}=$ const and α is an inclined curve in $E^{n-1} \Leftrightarrow \operatorname{det}\left(V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{n}^{\prime}\right)=0$.

Theorem 2. Let $M \subset E^{3}$ is a curve given by (I, α) chart. Then M is an inclined curve if and only if $H(s)=\frac{k_{1}(s)}{k_{2}(s)}$ is constant for all $s \in I$.

3. Curves of Constant Breadth According to type-2 Bishop Frame in E^{3}

Let $X=\vec{X}(s)$ be a simple closed curve in E^{3}. These curves will be denoted by (C). The normal plane at every point P on the curve meets the curve at a single point Q other than P. The point Q is called the opposite point of P. Considering a curve α which have parallel tangents \vec{T} and \vec{T}^{*} in opposite points X and X^{*} of the curve as in [4]. A simple closed curve of constant breadth which have parallel tangents in opposite directions can be introduced by

$$
\begin{equation*}
X^{*}(s)=X(s)+m_{1}(s) N_{1}+m_{2}(s) N_{2}+m_{3}(s) B \tag{3.1}
\end{equation*}
$$

where X and X^{*} are opposite points and N_{1}, N_{2}, B denote the type- 2 Bishop frame in E^{3} space. If N_{1} is taken instead of tangent vector and differentiating equation (3.1) we have

$$
\begin{align*}
\frac{d X^{*}}{d s}=\frac{d X^{*}}{d s^{*}} \frac{d s^{*}}{d s}=N_{1}^{*} \frac{d s^{*}}{d s} & =\left(1+\frac{d m_{1}}{d s}+m_{3} k_{1}\right) N_{1} \\
& +\left(\frac{d m_{2}}{d s}+m_{3} k_{2}\right) N_{2} \tag{3.2}\\
& +\left(\frac{d m_{3}}{d s}-m_{1} k_{1}-m_{2} k_{2}\right) B
\end{align*}
$$

where k_{1} and k_{2} are the first and the second curvatures of the curve, respectively [6]. Since $N_{1}^{*}=-N_{1}$, we obtain

$$
\begin{align*}
\frac{d s^{*}}{d s}+\frac{d m_{1}}{d s}+m_{3} k_{1}+1 & =0 \\
\frac{d m_{2}}{d s}+m_{3} k_{2} & =0 \tag{3.3}\\
\frac{d m_{3}}{d s}-m_{1} k_{1}-m_{2} k_{2} & =0
\end{align*}
$$

Suppose that ϕ is the angle between the tangent of the curve (C) at point $X(s)$ with a given fixed direction and $\frac{d \phi}{d s}=k_{1}$, then the equation (3.3) can be written
as as

$$
\begin{align*}
\frac{d m_{1}}{d \phi} & =-m_{3}-f(\phi) \\
\frac{d m_{2}}{d \phi} & =-\rho k_{2} m_{3} \tag{3.4}\\
\frac{d m_{3}}{d \phi} & =m_{1}+\rho k_{2} m_{2}
\end{align*}
$$

where $f(\phi)=\rho+\rho^{*}, \rho=\frac{1}{k_{1}}$ and $\rho^{*}=\frac{1}{k_{1}^{*}}$ denote the radius of curvatures at X and X^{*}, respectively. If we consider equation (3.4), we get

$$
\begin{align*}
\frac{k_{1}}{k_{2}} m_{1}^{\prime \prime \prime} & +\left(\frac{k_{1}}{k_{2}}\right)^{\prime} m_{1}^{\prime \prime}+\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right) m_{1}^{\prime}+\left(\frac{k_{1}}{k_{2}}\right)^{\prime} m_{1} \\
& +\left(\frac{k_{1}}{k_{2}}\right) f(\phi)^{\prime \prime}+\left(\frac{k_{1}}{k_{2}}\right)^{\prime} f(\phi)^{\prime}+\left(\frac{k_{2}}{k_{1}}\right) f(\phi)=0 \tag{3.5}
\end{align*}
$$

This equation is a characterization for X^{*}. If the distance between the opposite points of (C) and $\left(C^{*}\right)$ is constant, then

$$
\left\|X^{*}-X\right\|^{2}=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}=l^{2}, l \in \mathbb{R}
$$

Hence, we write

$$
\begin{equation*}
m_{1} \frac{d m_{1}}{d \phi}+m_{2} \frac{d m_{2}}{d \phi}+m_{3} \frac{d m_{3}}{d \phi}=0 \tag{3.6}
\end{equation*}
$$

By considering system (3.4), we obtain

$$
\begin{equation*}
m_{1}\left(\frac{d m_{1}}{d \phi}+m_{3}\right)=0 \tag{3.7}
\end{equation*}
$$

Thus we can write $m_{1}=0$ or $\frac{d m_{1}}{d \phi}=-m_{3}$. Then, we consider these situations with some subcases.

Case 1. If $\frac{d m_{1}}{d \phi}=-m_{3}$, then $f(\phi)=0$. So, $\left(C^{*}\right)$ is translated by the constant vector

$$
\begin{equation*}
u=m_{1} N_{1}+m_{2} N_{2}+m_{3} B \tag{3.8}
\end{equation*}
$$

of (C). Here, let us solve the equation (3.5), in some special cases.

Case 1.1 Let X be an inclined curve. Then the equation (3.5) can be written as follows,

$$
\begin{equation*}
\frac{d^{3} m_{1}}{d \phi^{3}}+\left(1+\frac{k_{2}^{2}}{k_{1}^{2}}\right) \frac{d m_{1}}{d \phi}=0 \tag{3.9}
\end{equation*}
$$

The general solution of this equation is

$$
\begin{equation*}
m_{1}=c_{1}+c_{2} \cos \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}} \phi+c_{3} \sin \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}} \phi \tag{3.10}
\end{equation*}
$$

And therefore, we have m_{2} and m_{3}, respectively,

$$
\begin{align*}
m_{2} & =\frac{k_{2}}{k_{1}}\left(c_{2} \cos \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}} \phi}\right)+\frac{k_{2}}{k_{1}}\left(c_{3} \sin \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}} \phi\right) \tag{3.11}\\
m_{3} & =c_{2} \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}} \sin \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}} \phi-c_{3} \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}} \cos \sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}} \phi} \tag{3.12}
\end{align*}
$$

where c_{1} and c_{2} are real numbers.

Corollary 1. Position vector of X^{*} can be formed by the equations (3.10), (3.11) and (3.12). Also the curvature of X^{*} is obtained as

$$
\begin{equation*}
k_{1}^{*}=-k_{1} . \tag{3.13}
\end{equation*}
$$

Case 2. $m_{1}=0$. Then, considering equation (3.5) we get

$$
\begin{equation*}
\left(\frac{k_{1}}{k_{2}}\right) f(\phi)^{\prime \prime}+\left(\frac{k_{1}}{k_{2}}\right)^{\prime} f(\phi)^{\prime}+\left(\frac{k_{2}}{k_{1}}\right) f(\phi)=0 \tag{3.14}
\end{equation*}
$$

Case 2.1 Suppose that X is an inclined curve. The equation (3.14) can be rewrite as

$$
\begin{equation*}
f(\phi)^{\prime \prime}+\left(\frac{k_{2}}{k_{1}}\right)^{2} f(\phi)=0 \tag{3.15}
\end{equation*}
$$

So, the solution of above differential equation is

$$
\begin{equation*}
f(\phi)=L_{1} \cos \frac{k_{2}}{k_{1}} \phi+L_{2} \sin \frac{k_{2}}{k_{1}} \phi \tag{3.16}
\end{equation*}
$$

where L_{1} and L_{2} are real numbers. Using above equation we obtain

$$
\begin{align*}
& m_{2}=L_{1} \sin \frac{k_{2}}{k_{1}} \phi-L_{2} \cos \frac{k_{2}}{k_{1}} \phi \tag{3.17}\\
& m_{3}=-L_{1} \cos \frac{k_{2}}{k_{1}} \phi-L_{2} \sin \frac{k_{2}}{k_{1}} \phi=-\rho-\rho^{*} \tag{3.18}
\end{align*}
$$

And therefore the curvature of X^{*} is obtained as

$$
\begin{equation*}
k_{1}^{*}=\frac{1}{L_{1} \cos \frac{k_{2}}{k_{1}} \phi+L_{2} \sin \frac{k_{2}}{k_{1}} \phi-\frac{1}{k_{1}}} \tag{3.19}
\end{equation*}
$$

And distance between the opposite points of (C) and $\left(C^{*}\right)$ is

$$
\begin{equation*}
\left\|X-X^{*}\right\|=L_{1}^{2}+L_{2}^{2}=\text { const } . \tag{3.20}
\end{equation*}
$$

References

[1] Bishop L. R., There is More Than one way to Frame a Curve, Am. Math. Monthly, (1975), 82(3), 246-251.
[2] Blaschke W., Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts, Math. Ann., (1915), 76(4), 504-513.
[3] Euler L., De curvis triangularibus, Acta Acad. Prtropol., (1780), 3-30.
[4] Fujivara M., On Space Curves of Constant Breadth, Tohoku Math. J., (1914), 179-184.
[5] Gun Bozok H. and Oztekin H., Some characterization of curves of constant breadth according to Bishop frame in E_{3} space, i-managerâs Journal on Mathematics, (2013), 2(3), 7-11.
[6] Gluck, H., Higher curvatures of curves in Euclidean space, Amer. Math. Montly, (1966), 73, 699-704.
[7] Hacisalihoglu H. H. and Ozturk R., On the Characterization of Inclined Curves in E^{n}, I. Tensor, N.S. (2003), 64, 163-170.
[8] Hacisalihoglu H. H., Differential Geometry, Ankara University Faculty of Science, 2000.
[9] Kazaz M., Onder M. and Kocayigit H., Spacelike curves of constant breadth in Minkowski 4-space, Int. J. Math. Anal., (2008), 2(22), 1061-1068.
[10] Kose O., On space curves of constant breadth, Doga Mat., (1986), 10(1), 11-14.
[11] Magden A . and Kose O., On the curves of constant breadth in E^{4} space, Turkish J. Math., (1997), 21(3), 277-284.
[12] Mellish, A. P., Notes on differential geometry, Ann. of Math., (1931), 32(1), 181-190.
[13] Ozyilmaz E., Classical differential geometry of curves according to type-2 bishop trihedra, Mathematical and Computational Applications, (2011), 16(4), 858-867.
[14] Reuleaux F., The Kinematics of Machinery, Trans. By A. B. W. Kennedy, Dover, Pub. Nex York, 1963.
[15] Sezer M., Differential equations characterizing space curves of constant breadth and a criterion for these curves, Doga Mat., (1989), 13(2), 70-78.
[16] Struik D. J., Differential geometry in the large, Bull. Amer. Math. Soc., (1931), 37(2), 49-62.
[17] Tanaka H., Kinematics Design of Cam Follower Systems, Doctoral Thesis, Columbia Univ., 1976.
[18] Yilmaz S. and Turgut M., Partially null curves of constant breadth in semi-Riemannian space, Modern Applied Science, (2009), 3(3), 60-63.
[19] Yilmaz S. and Turgut M., A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., (2010), 371, 764-776.
[20] Yoon D. W., Curves of constant breadth in Galilean 3-space, Applied Mathematical Sciences, (2014), 8(141), 7013-7018.

Current address, Hülya Gün Bozok: Osmaniye Korkut Ata University, Department of Mathematics, Osmaniye, Turkey.

E-mail address: hulyagun@osmaniye.edu.tr
Current address, Sezin Aykurt Sepet: Ahi Evran University, Department of Mathematics, Kirsehir, Turkey.

E-mail address: sezinaykurt@hotmail.com
Current address, Mahmut Ergüt: Namik Kemal University, Department of Mathematics, Tekirdag, Turkey.

E-mail address: mergut@nku.edu.tr

[^0]: Received by the editors: March 2, 2016, Accepted: November 07, 2016.
 2010 Mathematics Subject Classification. 53A04.
 Key words and phrases. Curves of constant breadth, type-2 Bishop frame, inclined curve.

