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ORIGINAL ARTICLE

A novel healthcare resource allocation decision support tool:
A forecasting-simulation-optimization approach

Muhammed Ordua , Eren Demirb , Chris Tofallisb and Murat M. Gunalc

aOsmaniye Korkut Ata University, Osmaniye, Turkey; bUniversity of Hertfordshire, Hertfordshire, UK; cNational Defence University,
Istanbul, Turkey

ABSTRACT
The increasing pressures on the healthcare system in the UK are well documented. The solu-
tion lies in making best use of existing resources (e.g. beds), as additional funding is not
available. Increasing demand and capacity shortages are experienced across all specialties
and services in hospitals. Modelling at this level of detail is a necessity, as all the services are
interconnected, and cannot be assumed to be independent of each other. Our review of the
literature revealed two facts; First an entire hospital model is rare, and second, use of mul-
tiple OR techniques are applied more frequently in recent years. Hybrid models which com-
bine forecasting, simulation and optimization are becoming more popular. We developed a
model that linked each and every service and specialty including A&E, and outpatient and
inpatient services, with the aim of, (1) forecasting demand for all the specialties, (2) captur-
ing all the uncertainties of patient pathway within a hospital setting using discrete event
simulation, and (3) developing a linear optimization model to estimate the required bed cap-
acity and staff needs of a mid-size hospital in England (using essential outputs from simula-
tion). These results will bring a different perspective to key decision makers with a decision
support tool for short and long term strategic planning to make rational and realistic plans,
and highlight the benefits of hybrid models.
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1. Introduction

Demand at National Health Service (NHS) hospitals
in England has been increasing significantly over
the past decade. The estimates show that there has
been a 26% and 32% increase in accident & emer-
gency (A&E) and inpatient hospital admissions
from 2010/11 to 2017/18, respectively (National
Health Services England, 2018a, 2018b). The
increasing demand for services is closely linked to
worsening prevailing conditions and an expanding
elderly population, that often has multiple complex
conditions, (such as diabetes and dementia), and
which forms the highest demand for beds (The
King’s Fund, 2012). Advancements in technology
and medicine have led to improvements in health-
care, greatly reducing length of stays in hospital and
increasing the number of day-cases (or outpatient);
however hospital beds remain fundamental resour-
ces for all health systems.

Despite a sharp growth in demand, the number
of beds has continued to decline. In 2000 there were
an average of 3.8 beds per 1,000 people, whereas
this had dropped to 2.4 beds by 2015. Between
2006/07 and 2015/16 the number of overnight beds
has decreased by over a fifth. As a result, the aver-
age bed occupancy rates have increased over time,

with rates for general and acute wards, and mental
health, now peaking at over 91% (BMA, 2017).
Hospitals are expected to aim for an 85% bed occu-
pancy rate, whereas they are increasingly operating
at very high levels of occupancy, particularly during
the winter period.

The implications of high bed occupancy rates are
widespread, and include, (1) it creates a backlog in
emergency departments (Nuffield Trust, 2016), (2)
patients can be placed on clinically inappropriate
wards, which may affect the patient experience and
the quality of care they receive (Goulding,
Adamson, Watt, & Wright, 2015), and (3) evidence
suggests that high occupancy rates increases the rate
of hospital acquired infections, which may lead to
temporary closure of beds or wards (Kaier, Mutters,
& Frank, 2012).

Due to severe budget cuts in the NHS, hospitals
do not have the necessary funding to increase cap-
acity, either in the form of beds or staff. Therefore,
hospital management needs to find efficient and
effective ways of utilising existing resources. This
may mean the management doing things differently,
a shift from the conventional decision-making pro-
cess to a more evidence-based approach (a behav-
ioural change).
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A hospital is a complex system made up of 25 or
more specialties providing treatment within
inpatient, outpatient and A&E services. There are
numerous departments and wards within each spe-
cialty, with staff including consultants, nurses,
healthcare assistances, and technicians. Therefore,
determining the most effective use of resources (pre-
dominantly beds, consultants and nurses) is a
major challenge.

The literature around developing models for
healthcare providers is rich and vast. Many simula-
tion-optimisation methods have been developed
with the aim of determining optimal solutions for
their decision variables (e.g. number of operating
rooms and beds or staffing cost). Previous and cur-
rent models in the literature typically maximized the
number of admissions and financial outputs, or
minimized length of stay, waiting time and costs in
healthcare settings. In the majority of instances
these models have focused on modelling a service,
department or a specialty, however no models have
tackled current and future bed occupancy (and
other key metrics of interest) at the entire hospital
level (details in the literature review below). A
model for a single service (or a few) would not be
adequate to determine the required capacity for all
specialties within a hospital.

A comprehensive entire hospital modelling
framework is necessary that combines all the spe-
cialties and services within a single decision support
system (DSS). Such an integrated DSS should be
able to: (1) forecast demand for all specialties within
inpatient, outpatient and A&E, (2) capture the entire
hospital patient pathway at a sufficient level of
detail, and (3) optimise the required bed capacity
and the required number of consultants and nurses.

Such a DSS is able to answer many key questions
beyond capacity requirements. For example, a hos-
pital may experience a sharp increase in activity.
The forecasts will generate the expected activity to
be integrated into the simulation model, whereas
the simulation will capture all the uncertainties
around the dynamics of the hospital, ranging from
time related activities (e.g. length of stay, waiting
times, and treatment duration) to hospital finances
(revenue, cost and surplus), with the aim of testing
a wide range of scenarios around impact of change.
The simulation has limitations around establishing
the optimal capacity requirements. This is where the
optimisation becomes a valuable tool to estimate the
exact bed requirements (along with consultant and
nurse hours) subject to constraints (e.g. targeted bed
occupancy rate).

The merger of these techniques, optimisation and
simulation, creates more power in decision making.
Optimisation techniques, such as mathematical

programming and heuristic algorithms, are able to
provide an exact configuration for the better, and
simulation techniques, such as Discrete Event
Simulation (DES) and System Dynamics (SD), are
able to tell possible outcomes of a scenario. Hybrid
modelling approaches are becoming more popular
in today’s complex decision-making environment.

The core objectives of this study are as follows:

1. Develop an innovative approach combining
DES and forecasting demand and capacity in
healthcare settings. To our knowledge, the lit-
erature does not have an extensive study that
forecasts demand for all types of attendances/
admissions of each specialty which then integra-
tes these demand inputs within an entire gen-
eric hospital simulation model.

2. Develop a linear optimisation algorithm to
determine the required bed capacity and staff
requirements to meet the needs of local popula-
tions. A number of essential outputs from the
simulation model will be fed into the optimisa-
tion model.

3. Investigate the combined power of forecasting,
simulation, and optimisation techniques in the
hospital performance modelling domain. Loose
or hard-coupled modelling techniques will bring
a novel modelling approach.

The remaining sections of the paper are organ-
ized as follows: Section 2 gives a review of the litera-
ture regarding simulation modelling and
optimisation methods applied to healthcare settings.
Section 3 illustrates the proposed hybrid framework.
Section 4 and 5 presents the case study and results,
respectively, and Section 6 concludes the study.

2. Literature review

In some studies, optimization and simulation meth-
ods have been combined in solving capacity prob-
lems of healthcare services, where effective solutions
have been investigated (see Table 1).

Kokangul (2008), Oddoye, Jones, Tamiz, and
Schmidt (2009), Zhang, Puterman, Nelson,
and Atkins (2012), Ma and Demeulemeester (2013)
and Holm, Luras, and Dahl (2013) were interested
in bed capacity problems, whereas Wang, Guinet,
and Besombes (2009) conducted a study related to
operating room capacity. Kokangul (2008) deter-
mined a maximum patient arrival value by means of
simulation and assumed this value as required max-
imum bed capacity in paediatric intensive care. The
simulation model is re-run using the maximum bed
capacity and it is tested that neither rejection nor
transfer is needed for any patient. The optimum bed

486 M. ORDU ET AL.



capacity is found by taking into account parameter
values (i.e. maximum bed capacity) using a math-
ematical model which targets maximum patient
admission and has service and occupancy levels con-
straints. Oddoye et al. (2009) simulates a medical
assessment unit in order to get five performance cri-
teria values coupled with lengths of queues, num-
bers of beds and waiting times. The researchers
address the balance between resources of the unit by
using a goal programming approach which has the
results from the simulation as input. Wang et al.
(2009) used mixed integer programming in distrib-
uting operating room hours to departments, and
simulate the room in order to specify the lengths of
stay. In their mathematical model there are a num-
ber of assumptions, such as fixed patient demands
for every week, fixed numbers of staff, and consider-
ing only weekdays although patients can also stay
during a weekend.

On the other hand, Ma and Demeulemeester
(2013) aim to effectively allocate the available beds.
To do this the researchers conduct a study which
consists of three steps. In the first step of the study
an integer linear programming model is developed
to efficiently use resources and maximize the finan-
cial situation of the hospital. Moreover, constraints
such as bed capacity and bed utilization are taken
into account. In the second step, the objective func-
tion is to allocate the beds effectively, for which a

mixed integer linear programming model is devel-
oped. In the final step, performance measurement is
carried out by using the results obtained from the
mathematical models through a DES model.

Simulation-optimization studies have been
utilised in resource optimization as well as bed
capacity problems. In this context human resources
and hospital rooms have been evaluated in the scope
of these problems. Ahmed and Alkhamis (2009),
Cabrera, Taboada, Iglesias, Epelde, and Luque
(2011), Cabrera, Taboada, Iglesias, Epelde, and
Luque (2012), Ghanes et al. (2015) and Uriarte,
Zuniga, Moris, and Ng (2017) investigated human
resource needs of healthcare services. Ahmed and
Alkhamis (2009) determined the staffing level from
an optimization model by considering budget con-
straint, patient arrivals and waiting times. These
optimum staff numbers are used as inputs in the
simulation model and thereby measure the system
performance.

Scheduling problems were solved using simula-
tion-optimization approach by Lamiri, Grimaud,
and Xie (2009), Cappanera et al. (2014), Saadouli
et al. (2015). Lamiri et al. (2009) developed a simu-
lation-optimization method to plan elective surgery
cases since operating rooms are used by both elect-
ive and non-elective patients. A mixed integer pro-
gramming model was developed with objective
functions minimizing overtime costs and patient

Table 1. Detailed information about studies related to simulation-optimization modelling in healthcare settings. ABS: Agent
based simulation, BDU: Bed daily utilization, DES: Discrete event simulation, GP: Goal programming, ILP: Integer linear pro-
gramming, INLP: Integer nonlinear programming, IP: Integer programming, Max: Maximization, Min: Minimization, MIP: Mixed
integer programming, NG: Not given, NSGA II: Non-dominated sorting genetic algorithm II, O: Optimization, OR: Operating
room, PIOA: Prevalence and incidence optimization algorithm, S: Simulation, SSA: Simultaneous search algorithm, SBSA:
Sequential bisection search algorithm, VBA: Visual basic for application.
Authors and Year Methods Objective Function Main constraints Inputs (from to)

Kokangul (2008) S: DES O: INLP Max: Number of admissions Service level, Occupancy level S to O
Wang et al. (2009) S: DES O: MIP Min: Length of stay OR capacity, emergency

demand to be met,
postponed demand,
unmet demand

O to S

Oddoye et al. (2009) S: DES O: GP Min: Deviations from queues,
waiting times, beds

Queue length, waiting time,
number of beds

S to O

Ahmed and Alkhamis
(2009)

S: DES O: IP Max: Throughput Min: Cost Budget, average waiting time,
staffing level

S to O

Lamiri et al. (2009) S: MCS O: MIP Min: Overtime cost, Patients’
related costs

Assignment of elective
case once

O to S

Cabrera et al. (2011) S: ABS O: O Min: Waiting time Cost of staff configuration S to O
Zhang et al. (2012) S: DES O: SSA, SBSA – – S to O
Cabrera et al. (2012) S: ABS O: O Min: Length of stay Cost of staff configuration S to O
Ma and Demeulemeester

(2013)
S: DES O: ILP, MIP Max: Total financial contributions Bed shortage, BDU, OR

blocks, total surgery time,
admission volume bound

O to S

Holm et al. (2013) S: DES O: PIOA – – S to O
Cappanera, Visintin, and

Banditori (2014)
S: DES O: MIP 1st Min: Max ORs and BDU 2nd Min:

Gaps between max and min ORs and
BDU 3rd Min: Sum of quadratic
positive deviations of ORs and
BDU from a fixed threshold

Daily utilization of ORs,
maximum BDU

O to S

Ghanes et al. (2015) S: DES O: O Min: Length of stay Staffing budget, Door-to-
door time

S to O

Saadouli, Jerbi, Dammak,
Masmoudi, and
Bouaziz (2015)

S: DES O: MIP Min: Maximum completion time and
total waiting time of operations

Completion times, waiting
times, assignment
of operations,

O to S

Uriarte et al. (2017) S: DES O:NSGA II – – S to O
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related costs. A Monte Carlo simulation was devel-
oped to find a reasonable solution for elective sur-
gery cases and compared the developed simulation-
optimization method with a number of heuristic
and meta-heuristic methods (i.e. sequential improve-
ment, local optimization, and taboo search heuris-
tics). Cappanera et al. (2014) compared different
scheduling policies by developing a mixed integer
programming model and then, combined this with a
DES model. They tested the schedules generated by
this optimization method in the stochastic setting of
the hospital provided by the simulation model with
the parameters (i.e. surgical time and length of stay)
which have the features of variability.

Although our literature review and the summary
in Table 1, includes the intersection of simulation
and optimisation in hospitals, a few more words
about simulation and hospitals is worth mentioning.
First, whole hospital simulation models are rare in
the literature and one of the pioneering studies were
conducted by G€unal and Pidd (2011). In their
paper, they discussed the challenges of whole hos-
pital simulation studies. Furthermore, G€unal (2012)
sets the scene for building hospital simulation mod-
els by using different simulation techniques. The use
of simulation in healthcare, however, is not limited
with optimisation or capacity. Health economics
also benefits from simulation (Marshall et al., 2015)
in terms of understanding the relationship between
cost and benefit. In almost all of these studies, a
natural conclusion can be drawn: to tackle the com-
plexity in healthcare it is better to use multiple tech-
niques. Hybrid modelling approaches, therefore, are
emerging in healthcare. For example, Mielczarek
and Zabawa (2016) used forecasting techniques to
feed a DES and SD simulation models and studied a
health condition in the country. Likewise, Harper,
Mustafee, and Feeney (2017) presents a hybrid mod-
elling methodology which includes forecasting and
DES and studied endoscopy services in a hospital.

3. The proposed hybrid framework:
FSO approach

In this study, the following three methodologies are
combined to develop a forecasting-simulation-opti-
mization (FSO) approach (see Figure 1) for the pur-
pose of optimizing the level of resources of an NHS
Trust: forecasting, DES and integer linear program-
ming. The first component of the proposed method-
ology is to establish a decision support system
(DSS) for comparative forecasting to select the best
forecasting method to predict demand for the entire
hospital, including inpatient specialties, outpatient
specialties and A&E. The second component of the
proposed methodology is to develop a generic

hospital simulation model that integrates all special-
ties (i.e. A&E, outpatient, and inpatient services)
and interactions to capture the stochastic behaviour
of the hospital. Finally, the third component of the
proposed methodology is to develop an integer lin-
ear programming model to reallocate the available
number of beds and optimize the staffing levels of
inpatient services of a mid-size hospital. Thus, the
FSO approach is able to capture the realistic (or sto-
chastic) behaviour of the hospital. A number of out-
puts generated from the simulation model are then
fed into the optimization model. The hospital is
modelled using an integer linear programme and
the desired decision variables are obtained by maxi-
mizing the number of discharged patients from each
specialty under a number of constraints.

The main contribution of this study is to develop
a hybrid framework integrating three distinct meth-
odologies. The forecasting techniques used in our
hybrid framework enable conversion from generic
data sources to useful information. In today’s world,
and particularly on the verge of a new industrial
revolution, so called Industry 4.0, we are rich in
terms of data collection, however intelligence is
required to convert data into information. Our first
contribution to knowledge in this study, and in the
proposed framework, is to give some guidance on
how normally collected hospital data can be ana-
lysed to extract useful information. The “useful
information” is not only the findings of the past but
is also the key to the predictions of the future.
Simulating hospital operations enables predictions
by way of running “what-if” scenarios. Another
benefit of simulation is to explore variation in
patient demand and services provided in various
service points in hospitals. Simulation is a realistic
way to convince decision makers. Our second con-
tribution is the scale of the simulation model we
developed, as it depicts complex hospital care proc-
esses in the A&E, inpatient and outpatient facilities.
Whole hospital level simulation models are rare in
the literature. A simulation model helps us find the
effects of variation and what-if scenarios, however it
does not tell us the optimum configuration of hos-
pital resources. An optimisation model is attached
to our framework as it finds the optimum number
of beds, doctors, and nurses for specialties. This
model uses some of the outputs generated by the
simulation model. Co-working of the three models,
forecasting, simulation, and optimisation, is a novel
approach and contributes to the healthcare domain.

Activity related data at PAH (i.e. the number of
admissions to inpatient, outpatient and A&E serv-
ices) is derived from the national Hospital Episode
Statistics (HES) dataset after an extensive data prep-
aration process. HES has all the information about
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patients admitted and treated in NHS hospitals in
England, capturing administrative, personal and med-
ical details. PAH is a general hospital north of
London (Harlow, Essex) with 557 beds serving a
population of 350,000, providing services across 27
distinct specialties (e.g. cardiology, ophthalmology,
trauma and orthopaedics, etc.) The extracted data
period is from 01/04/10 to 31/03/13 (three financial
years). During the data period, PAH had 248,910A&E
arrivals, 996,134 outpatient attendances and 191,462
inpatient admissions across the 27 specialties.

3.1. Demand forecasting

In this study, a decision support system (DSS) is
developed to identify better forecasting methods and
time periods for each specialty of the hospital. The
forecasted demand is used as an input in the simu-
lation and optimization models, instead of using
approximate demand, such as Wang, Li, Tussey, &
Ross (2012) and Demir, Gunal, & Southern (2017).
All required hospital data is derived from the
National Hospital Episode Statistics (HES) dataset
after an extensive data preparation process. The
time series (i.e. daily, weekly and monthly) are
established after extracting the required data. The
data is divided into two sets: training set (the first
24-months of data) and validation set (the last 12-
months of data). The best model parameters for
each forecasting method are determined, i.e.
ARIMA, stepwise linear regression (SLR), exponen-
tial smoothing (ES) and seasonal and trend decom-
position using loess forecasting (STLF).

The goodness of fit (for in-sample) and the fore-
cast accuracy (for out-of-sample) are obtained. The
forecasting models are assessed according to the

results of the goodness of fit, whereas the best fore-
casting method and prediction frequency are
selected by taking into account the results of the
forecast accuracy. Finally, the demands of each spe-
cialty are estimated by using the forecasting results
which was given in Ordu, Demir, and Tofallis
(2019) and these demand inputs are embedded into
the generic hospital simulation model.

A total of 760 forecasting models are developed
for outpatient services (including first and follow up
referrals) and inpatient services (elective and non-
elective services) along with the A&E department.
The 760 models are made up of the following:

� 19 outpatient specialities � 2 (first and follow up
referrals separately) � 3 periods (daily, weekly
and monthly) � 4 forecasting methods, which is
456 models for outpatients.

� 16 inpatient specialities (for elective admissions) �
3 periods (daily, weekly and monthly) � 4 forecast-
ing methods, which is 192 models for inpatients.

� 9 inpatient specialities (for non-elective admis-
sions) � 3 periods (daily, weekly and monthly)
� 4 forecasting methods, which is 108 models
for inpatients.

� A&E is forecasted daily only, thus 1� 4 forecast-
ing methods.

To give an example, Table 2 shows the forecast-
ing results in terms of both training and validation
sets for one inpatient service (the general surgery
elective and non-elective specialties).

We have chosen the mean absolute scaled error
(MASE) to measure the goodness-of-fit and the
forecast accuracy since the MASE can be applied to
compare the forecasting models carried out under

Figure 1. The structure of the FSO approach along with the relationships of inputs-outputs.
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different periods (Hyndman and Koehler, 2006).
The MASE divides the mean absolute error of the
forecasting method by the mean absolute error of
the naïve method (Hyndman and Koehler, 2006).
Using MASE, 64 best forecasting models are selected
out of 760 models, comprising 38 for outpatient
specialties demand, 25 for inpatient specialties, and
1 for A&E. Table 2 illustrates the entire process for
the general surgery specialty and the remaining spe-
cialties are shown in Table 3.

The best forecasting result for the inpatient elect-
ive specialty is daily stepwise linear regression with
the lowest MASE value 0.53. In addition, the best
forecasting result for the general surgery non-
elective inpatient specialty is daily ARIMA (0,1,1)
with the lowest MASE value 0.73. The best forecast-
ing method and period for the general surgery
inpatient specialty are highlighted in Table 2.

Table 3 illustrates the best forecasting methods
and periods for each inpatient specialty. As seen
from the table, there is no single outperforming
forecasting method, thus the best technique should
be determined accordingly (rather than relying on
one specific method).

3.2. Generic hospital simulation modelling

The DES model developed here is simulating patient
pathways in a general hospital with multiple special-
ties. Patients compete for scarce hospital resources
in their journeys and therefore waiting is likely to

occur. The cascading services and shared resources
create a complex structure in hospital services.

We used a variety of inputs in our study, includ-
ing primary and secondary datasets. The following
inputs were collected from the hospital as primary
data and verified by a number of experts (i.e. direc-
tors, consultants and nurses): A&E treatment time,
outpatient consultation time for first and follow up
attendances, pre-assessment time for A&E, out-
patient and inpatient services, A&E laboratory pro-
cess for each type of laboratory test, theatre time,
and day-case procedures. In addition, several other
secondary data sets were provided by the hospital,
e.g. number of beds, financial tariffs, outpatient
clinic slots for each specialty, theatre capacity for
each specialty, and the number of physicians
and nurses.

In this study, a DES model is used in a decision
support system (DSS) for demand and capacity
planning in the hospital. For this, the predicted
demand is obtained from forecasting techniques
(instead of using presumptive demand) to embed as
input in the simulation model. Based on historical
data (i.e. HES dataset), transfers from A&E to out-
patient and inpatient non-elective specialties is
around 5% and 69%, respectively. Outpatient and
inpatient non-elective specialties also have transfers
from other sources too, for example general practi-
tioners and community dental services. We inde-
pendently forecasted the number of patients for
outpatient first attendances and inpatient non-
elective admissions excluding those transfers from

Table 2. Forecast accuracy values (mean absolute scaled error) for the general surgery inpatient elective and non-elective
speciality. ARIMA: Autoregressive integrated moving average, ES: Exponential smoothing, SLR: Stepwise Linear Regression,
STLF: Seasonal and trend decomposition by loess forecasting, TS: Training Set, VS: Validation Set.

Speciality Forecasting Models

Daily Weekly Monthly

Parameters TS VS Parameters TS VS Parameters TS VS

Inpatient (Elective) SLR SLR 0.45 0.53 SLR 0.83 1.10 SLR 0.68 1,43
ARIMA (2,1,5) 0.77 0.76 (0,1,1) 0.83 0.81 (1,0,0) 0.95 0.71
ES (A,N,N) 0.87 0.76 (M,Ad,N) 0.80 0.79 (M,A,N) 0.83 1.70
STLF (A,Ad,N) 0.94 0.86 (M,A,N) 0.74 6.99 (M,N,N) 0.87 1.41

Inpatient (Non-elective) SLR SLR 0.83 0.88 SLR 1.17 1.32 SLR 0.88 1.71
ARIMA (0,1,1) 0.75 0.73 (0,1,1) 0.90 0.90 (1,0,0) 1.02 1.65
ES (A,N,N) 0.75 0.83 (A,Ad,N) 0.93 0.90 (A,N,N) 0.95 0.91
STLF (A,N,N) 0.67 0.98 (A,N,N) 0.64 1.45 (M,N,N) 0.96 2.05

Table 3. Best performing Forecasting methods for the inpatient specialities; ARIMA: Autoregressive integrated moving aver-
age, ES: Exponential smoothing, SLR: Stepwise linear regression, STLF: Seasonal and trend decomposition by loess
forecasting.

Specialities

Elective Non-elective

Forecasting model Forecasting period Forecasting model Forecasting period

General Surgery SLR Daily ARIMA (0,1,1) Daily
Trauma & Orthopaedics ARIMA (1–3) Daily ARIMA (0,1,1) Weekly
General Medicine ES: ETS(M,A,N) Monthly STLF: STLþ ETS(A,N,N) Monthly
Cardiology SLR Daily ES: ETS(A,N,N) Monthly
Paediatrics ARIMA (0,1,3) Weekly ARIMA (1) Daily
Geriatric Medicine – – ARIMA (0,1,2) Daily
Obstetrics – – ARIMA (0,1,1) Daily
Gynaecology ARIMA (1,0,0) Monthly SLR Monthly
Others ES: ETS(M,Ad,N) Weekly ARIMA (0,1,1) Daily
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A&E. Our simulation model captures both the
patients from A&E (forecasting was independently
carried out for the A&E demand) using transfers as
stated above and the independent forecasts for the
number of attendances/admissions from other sour-
ces (forecasting was conducted for the outpatient
first attendances and inpatient admissions). In add-
ition, the forecasts of the A&E arrivals and
inpatient-elective admissions are completely inde-
pendent forecasts.

Some of the required data are extracted from the
National Hospital Episodes Statistics (HES) dataset
and from local hospital data over the study period.
The data is used for both demand forecasting and
parameter estimation of the statistical distributions
for the DES model. These inputs along with model
parameters, financial inputs and local data provided
by the hospital, are embedded into the generic hos-
pital simulation model. The model then generates
current and future levels of key output metrics for
each specialty as seen in Figure 2. Simulation out-
puts for outpatient specialties and A&E are provided
as supplementary materials whereas outputs for
inpatient services are discussed in Section 4.

There are three main sources of patient arrivals
in a hospital. Emergency patients arrive at an A&E
department and after treatment some of these
patients are admitted to hospital as inpatients.
Although most A&E departments are seen isolated
from hospitals, they still require hospital resources
such as radiology and biochemistry services and are
therefore linked with main hospital resources.
Furthermore, A&E departments are linked with
upstream bed resources, for example a patient who
needs to stay in hospital must be accommodated on
a hospital ward bed. In fact, some emergency
patients might require surgery, and, in this case,
they also consume operating theatre capacity, and
pre-empt planned surgeries.

Elective patients arrive at hospitals by way of
referrals, mostly made by General Practitioners
(GP). This type of demand can be controlled in a
way since they are mostly non-urgent cases whose
admissions can be delayed, or programmed, based
on the status of the resources, such as consultants,
operating rooms, and elective beds. Elective patients,
or inpatient, processes generally require scheduling,
admission and bed management. In the model,
although these processes are shown as a single box
in Figure 2, they are modelled in detail to be able to
read the inputs and generate the desired perform-
ance outputs.

Outpatients arrive at hospitals on a daily basis
and are referred by themselves or by GPs. An out-
patient episode might end the same day, by a con-
sultant’s decision, or may need a follow up. The
number of follow ups might increase for patients
who have chronic diseases. The existence of feed-
back in outpatients creates complications in the
management of outpatient processes. The DES
model includes a booking mechanism which mimics
the outpatient first and follow up procedures.

Our generic hospital simulation model generates
many key outputs as seen in Figure 2, for example,
bed occupancy rates, staffing hours, total revenue,
clinic utilization, theatre utilization, demand cover-
age ratio and many other outputs. However, we
focussed on capturing the stochastic nature of the
hospital into the future. It is important for our
study in terms of how long a patient stays in a bed
depending on age group, diagnostics and specialties.
Similarly, we need to better understand how much
revenue the hospital expects in the future. All these
aspects are crucial for this study to develop a robust
model which plans bed capacity and optimizes staff-
ing levels. All these reasons highlight the importance
of capturing the expected stochastic behaviour of
the hospital in future. The main output variables

Figure 2. Outline illustration of the whole hospital conceptualized model.
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from the simulation model are therefore the average
length of stay and average revenue for each elective
and non-elective inpatient specialty.

The revenue based on the length of stay for each
patient staying in a bed is calculated using the for-
mula we developed, see Eq. (1). A long stay pay-
ment for days exceeding the trimpoint is applied by
considering the trimpoint determined by the NHS.
Trimpoint is a threshold for the length of stay for
patients (NHS Digital, 2018). For example, the non-
elective long stay trimpoint is 5 days for an HRG
Code EB01Z (Non-Interventional Acquired Cardiac
Conditions) in the general surgery inpatient spe-
cialty and £211 (£243 with the Market Forces Factor
(MFF)) per day for exceeding the trimpoint is
charged. The non-elective spell tariff is £585 (£675
with the MFF). The hospital reimburses £1161
(MFF � £585þMFF � 2 days � £211) if a non-
elective patient with the HRG code “EB01Z” stays in
a bed for 7 days. The Market Forces Factor (MFF) is
used as a multiplier in the calculation of the rev-
enue, and is a reflection of service cost, which might
depend on the location of each hospital in the coun-
try (Department of Health and Social Care, 2014).

Total Revenue ð£Þ ¼
�Xse

i¼1

Xej
j¼1

TEþ TAEð Þij �MFF

þ
Xsne
i¼1

Xnej
j¼1

TNEþ TANEð Þij �MFF

�

(1)

where se: Total number of inpatient elective special-
ties; sne: Total number of inpatient non-elective
specialties; ej: Total number of admissions at
inpatient elective specialty j; nej: Total number of
admissions at inpatient non-elective specialty j; TEji:
i tariff at inpatient elective specialty j; TAEji: i tariff
adjustment at inpatient elective specialty j due to
exceeding the trimpoint; TNEji: i tariff at inpatient
non-elective specialty j; TANEji: i tariff adjustment
at inpatient non-elective specialty j due to exceeding
the trimpoint; MFF: Market forces factor.

Black-box and white-box validations were used to
validate our DES model. We collaborated with sev-
eral key stakeholders at PAH to help us with the
verification (checking for face validity) and valid-
ation stages of the simulation model. The model
was continually improved according to the feed-
backs received. Each model unit was then rigorously
tested under extreme conditions, enabling us to pass
white-box validation tests. In the final stage of
model development the key stakeholders were con-
vinced that the model is appropriate for testing
scenarios and interventions of interest.

The next phase of validation is the Black-box
approach, where the model is tested to examine if it
behaves like the real system by comparing

simulation results with the observed ones. Several
key metrics were used for this purpose, including
occupancy rates and total revenue. We confirm that
the differences between real world observations and
the model outputs were within the 95% confidence
interval range, which then deemed the model to be
validated, hence suitable to evaluate a wide range of
alternative policy scenarios.

3.3. Integer linear programming integrated with
forecasting and DES

We developed a decision support system (DSS),
named as the FSO approach, integrating three dis-
tinct methodologies to determine the required level
of resources of a mid-size hospital inpatient services.
Demand is forecasted for each specialty to be used
as input for both the simulation and optimization
models. A generic hospital simulation model is
developed to capture the future key performance
metrics (i.e. average length of stay and revenue) by
modelling the stochastic behaviour of the hospital
(including patients, human resources, beds, treat-
ment procedures, etc.). An integer linear model is
integrated with forecasting and DES to reallocate
the existing number of beds and optimize the staff-
ing levels. The structure of the DSS is presented as a
flow diagram which shows how three distinct tech-
niques are combined in Figure 1. The number of
beds for each inpatient specialty is provided by the
hospital. The FSO approach then generates future
levels of key output metrics (i.e. the required num-
ber of beds, consultants and nurses working with
full time equivalent).

3.3.1. Parameters and decision variables
The set of inpatient specialties that serve wards for
patients consists of general surgery, trauma & ortho-
paedics, general medicine, cardiology, paediatrics,
geriatric medicine, obstetrics, gynaecology, and
“others” which includes all other specialities with
less than 1% patients of total patient activity in
the hospital.

The parameters of the integer linear program-
ming are defined as follows:

NDPs: Number of discharged patients at specialty s,
BOR: Bed occupancy rate (assumed to be annual

bed occupancy rate of the hospital)
TARGET: Target level of bed occupancy rate (assumed

to be 85% according to the literature),
NBs: The number of available beds at specialty s,
BEDS: The total number of available beds (assumed

to be available bed capacity of the hospital),
NDEPs: Number of discharged elective patients at

specialty s,
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NAEPs: Number of forecasted admitted elective
patients at specialty s (assumed to be fore-
casted bed demand of the hospital),

NEs: Number of non-elective patients at specialty s,
NONELECTIVEs: Number of forecasted non-elective

patients at specialty s (assumed to
be forecasted bed demand of the
hospital for non-elective patients),

INCOME: Total income from patient care,
COST: Total staffing costs,
NPRs: Nurse to patient ratio at specialty s,
CHs: Consultant hours at specialty s (assumed to be

the consultation time served by total number
of consultants),

CTs: Consultation times at specialty s (assumed to
be the consultation time required by patients).

The bed occupancy rates of hospitals are meas-
ured by the NHS Trusts in the UK on a regular
basis as a key output metric of their inpatient serv-
ices. For this, NHS Trusts use Eq. (2), a ratio that
divides the number of hospital beds occupied by the
total number of available hospital beds in a period
(Harper and Shahani, 2002).

Bed Occupancy Rate %ð Þ ¼
100� The number of occupied bed days

Total number of beds x Number of days in the period

� �

(2)

In the UK a full time equivalent (FTE) is 37.5 h
per week, which equates to 1950 h in a year (NHS
improvement, 2017). Consultant hours are calcu-
lated by multiplying annual working time based on
1.0 FTE with the total number of consultants at the
related specialty. According to experts, a consultant
on average spends around 20min per day per
patient. Consultation times are calculated by multi-
plying the time for care (i.e. 20min) with total
length of stay (as specified in Eq. (3)).

Consultation timej ¼ T�
Xej
i¼1

NAEPij�EALoSijð Þ þ
Xnej
i¼1

NANEPij�NEALoSijð Þ
 !

(3)

where ej: Total number of admissions at inpatient
elective specialty j; EALoSij: Length of stay of elect-
ive patient i at specialty j; NAEPij: Number of
admitted elective patient i at specialty j; NANEPij:
Number of non-elective patient i at specialty j; nej:
Total number of admissions at inpatient non-
elective specialty j; NEALoSij: Length of stay of
non-elective patient i at specialty j; T: Average time
for patient care by consultant.

According to the report published by the
National Institute for Health and Care Excellence
(NICE) (2014), a nurse should not be liable for

more than 8 patients, otherwise the risk of harm is
increased for nurses (NICE, 2014). The quality of
service significantly decreases when a nurse is
responsible for more than 8 patients (Griffiths,
Dall’Ora, & Ball, 2017). Therefore, nurse to patient
ratio is considered as a nurse care with a maximum
of 8 patients per shift in a day.

Total revenue from an inpatient specialty is cal-
culated by multiplying the number of patients with
the average revenue per patient (an output from the
simulation model). The formula is shown in Eq. (4).

Total revenue ¼
Xse
j¼1

ðEARj�ENPjÞ

þ
Xsne
j¼1

ðNEARj�NENPjÞ (4)

where EARj: average revenue at elective specialty
j; ENPj: Number of patients at elective specialty j;
NEARj: average revenue at non-elective specialty j;
NENPj: number of patients at non-elective specialty
j; se: Total number of inpatient elective specialties;
sne: Total number of inpatient non-elective specialties.

Total costs are the staffing costs of all related
inpatient specialties as shown in Eq. (5). The average
annual earnings of consultants and nurses are taken
into account in the calculation of staffing costs.

Total cost ¼ AEC�
Xs
j¼1

NCj þ AEN�
Xs
j¼1

NNj (5)

where AEC: Annual average earnings of consultants;
AEN: Annual average earnings of nurses; NCj: num-
ber of consultants at specialty j; NNj: Number of
nurses at specialty j; s: Total number of inpatient
specialties.

3.3.2. Decision variables
The decision variables of the integer linear program-
ming are defined as follows.

DEs: Number of discharged elective patients at spe-
cialty s,

DNEs: Number of discharged non-elective patients
at specialty s,

NBs: Required number of beds at specialty s,
NNs: Required number of nurses at specialty s,
NCs: Required number of consultants at specialty s.

3.3.3. Objective function and constraints
The optimisation model is as follows.

Max
Xs
i¼1

NDPs, 8s 2 S (6)

Subject to:

BORs � TARGET, 8s 2 S (7)

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 493



X
s2S

NBs � BEDS (8)

NDEPs � NAEPs, 8s 2 S (9)

NEs ¼ NONELECTIVEs, 8s 2 S (10)X
REVENUE �

X
COST (11)

NPRs � 8, 8s 2 S (12)

CHs � CTs, 8s 2 S (13)

DEs, DNEs, NBs,Ns,Cs 2 Zþ, 8s 2 S (14)

The objective function (6) maximizes the number
of discharged patients (throughput). Constraint (7)
ensures that bed occupancy rate of each specialty
does not exceed the target level of 85%. Constraint
(8) allocates the bed capacity (total number of avail-
able beds). Constraint (9) ensures the number of
discharged elective patients does not exceed the
number of admitted elective patients. Constraint
(10) ensures that each non-elective patient is admit-
ted to the hospital and stays in a bed. Constraint
(11) ensures that the total income from patient care
must be more than or equal to the total costs.
Constraint (12) indicates that each nurse must be
responsible for no more than eight patients.
Constraint (13) ensures that the total consultation
time served by total number of consultants must be
more than the total consultation time needed by
patients. Constraint (14) denotes that all decision
variables must be positive integers.

4. A case study: reallocating number of beds
and optimizing staffing levels

We applied the FSO approach to PAH and provided
inputs from four types of resources: Local data, fore-
casting, simulation and the literature (see Table 4
for a breakdown of beds by specialty). Financial
inputs, target level of bed occupancy rate and nurse
to patient ratio are obtained from the literature. The
bed occupancy rate in the UK hospitals must not
exceed the target level of 85% (Royal College of
Physicians, 2015). In addition, the financial inputs
(e.g. the average annual earnings of consultants and
nurses) are obtained from the NHS Digital (2014).
Another important input from the literature is the

nurse to patient ratio, thus a nurse to patient ratio
of eight is included in the model as a constraint.

The demand for each specialty is estimated using
the comparative forecasting methods. Average
length of stay and average revenue are inputs gener-
ated by the generic hospital simulation model. In
the simulation model, a diagnostics code is assigned
to each patient, derived from the HES dataset using
the observed frequency distributions. According to
the diagnostic codes based on type of specialty and
age groups, we considered different HRG tariffs
depending on length of stay of patients. Thus, the
simulation model calculates the average revenue for
each specialty. The integer linear model is then
embedded by using these stochastic inputs (i.e. aver-
age length of stay and revenue) to reflect the reality
of the hospital. Values of all input parameters are
given in Table 4.

We developed a hybrid framework integrating
three distinct methodologies to determine the
required level of resources of a mid-size hospital
inpatient services in England. Demand is forecasted
for each specialty to be used as input for both the
simulation and optimization models. A generic hos-
pital simulation model is developed to capture the
key performance metrics (i.e. average length of stay
and revenue) by tackling stochastic behaviour of the
hospital (including patients, human resources, beds,
treatment procedures, etc.). An integer linear model
is integrated with forecasting and DES to reallocate
the existing number of beds and optimize the staff-
ing levels. The developed integer linear model is
solved using LINGO 17.0 software.

4.1. Reallocated number of beds

Table 5 illustrates the number of discharged elective
and non-elective patients, bed occupancy rate (%),
the reallocated number of beds and the number of
human resources required to meet all demands for
each specialty. Bed occupancy rates of all the
inpatient specialties are less than the target level of
85%. A total of 486 beds is adequate for the hospital
to ensure the hospital is within the recommended
bed occupancy rate.

Table 4. Input values of the FSO approach. ENB: Existing number of beds, ALoS: Average length of stay, NAP: Number of
admitted patients, AR: Average revenue.

Specialty Elective Non-elective

Code Name ENB ALoS (day) NAP AR (£) ALoS (day) NAP AR (£)

1 General surgery 85 1.04 3468 £1282 4.09 3660 £2080
2 Trauma & Orthopaedics 59 1.67 3276 £3034 5.90 1536 £3459
3 General Medicine 88 0.33 1469 £1486 3.90 9004 £2110
4 Cardiology 25 0.73 972 £2117 7.15 1224 £2383
5 Paediatrics 16 0.96 264 £1568 1.42 2196 £1038
6 Gynaecology 41 0.60 1553 £1224 1.64 2147 £1386
7 Others 91 0.77 372 £784 3.99 732 £1629
8 Geriatric Medicine 111 – – – 6.03 7692 £2280
9 Obstetrics 41 – – – 1.94 7320 £1636
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Figure 3 illustrates a comparison of FSO results
with the current situations. According to the results,
there are significant differences between the pro-
posed number of beds and current number of beds
in a few specialties. Unfortunately, many beds in a
number of specialties are idle while some specialties
run in overcapacity. For example, the general sur-
gery inpatient specialty requires only 60 beds, how-
ever it currently has 88 beds. A large number of idle
beds were found to be available in the other special-
ties. On the other hand, the geriatric medicine
inpatient specialty works under severe demand pres-
sure in terms of available beds, and the current bed
occupancy rate is 127%. This specialty has been
struggling against the overcapacity demand by refer-
ring and admitting the patients in beds of other
wards. The specialty decreases the bed occupancy
rate from 127% to 85% on condition that the
required number of beds is increased by 39 beds. In
summary, the following specialties have unused
beds: general surgery (with 28 beds), trauma &
orthopaedics (with 12 beds), paediatrics (with 5
beds), gynaecology (with 26 beds) and others (with
80 beds). The remaining specialties require add-
itional beds to cope with the overcapacity running,
for example, general medicine (by 30 beds),

cardiology (by 6 beds), geriatric medicine (by 39
beds) and obstetrics (by 5 beds).

A sensitivity analysis was also carried out,
increasing the forecasted demand (i.e. above the
base model). The sensitivity analysis consists of 20
experiments where demand is cumulatively
increased by 1% steps, for example, the demand
increased by 1% of the forecasted demand in the
first experiment, and 2%-increase in demand is used
as input in the second experiment.

A new metric known as Demand Coverage Ratio
(DCR) is developed for the purpose of measuring
the percentage of patients admitted to the hospital
and discharged using the available resources of
each specialty. The DCR formula is given in Eq.
(15). This output illustrates whether the hospital is
able to cope with the demand. For example, 100%
DCR means that all patient demands are met with
the available resources, whereas a DCR of 85%
means that the specialty is unable to meet all
demand, and thus requires additional resources to
admit and discharge the remaining 15%. Hospitals
are able to better understand their ability using this
output metric. The DCR of the hospital is
calculated by the formula and used in our FSO
model.

Table 5. The results of the FSO approach for the base model. NDEP: Number of discharged elective patients, NDNEP:
Number of discharged non-elective patients, BOR: Bed occupancy rate, NB: Number of beds, NC: Number of consultants, NN:
Number of nurses.
Code Name NDEP NDNEP BOR (%) NB NC NN

1 General surgery 3468 3660 84.82 60 4 20
2 Trauma & Orthopaedics 3276 1536 84.72 47 3 15
3 General Medicine 1469 9004 84.81 115 7 37
4 Cardiology 972 1224 83.62 31 2 10
5 Paediatrics 264 2196 83.98 11 1 4
6 Gynaecology 1553 2147 81.33 15 1 5
7 Others 372 732 79.88 11 1 4
8 Geriatric Medicine – 7692 84.72 150 8 48
9 Obstetrics – 7320 84.58 46 3 15
Total 11374 35511 – 486 30 158

Figure 3. Comparison of results with the current situation. Specialties are (1) General surgery, (2) Trauma & orthopaedics, (3)
General medicine, (4) Cardiology, (5) Paediatrics, (6) Geriatric medicine, (7) Obstetrics, (8) Gynaecology and (9) Others.
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Demand Coverage Ratio ð%Þ ¼

100�
Psi

j¼1
NPDIjPsi

j¼1
NPAIj

0
@

1
A
(15)

where NPDIj is the number of patients who are dis-
charged using available resources from the inpatient
specialty j; NPAIj is the number of patients who are
admitted to inpatient specialty j; si is the total num-
ber of inpatient specialties.

We tested the sensitivity of the developed model
against unexpected demand increases. The results
show that the hospital wards will be able to cope
with up to 14% demand increase within the fore-
casted year (see Figure 4). That is why DCR rates
(i.e. Experiments 1 to 14) are 100%, meaning that
the related inpatient specialties are able to discharge
all patient demands with their available resources.
In addition, BOR (bed occupancy rate) is less than
85%, meaning the wards are able to operate within

the recommended level. An increase in demand
exceeding 15% will force the hospital to reject or
transfer patients to other hospitals, whereas the bed
occupancy rate will remain around the desired level.
The demand coverage ratio reduces with increasing
demand. For example, in Experiment 20, DCR is
below 100% (i.e. approximately 91%). This means
that the inpatient specialties were unable to cope
with all demand, thus need additional resources to
treat the remaining 9%.

4.2. Optimized number of staff

Figures 5 and 6 show the relationship between bed
occupancy rate and total number of consultants,
and bed occupancy rate and total number of nurses,
respectively. According to the graphs, a minimum
of 30 consultants and 158 nurses are needed to be
able to operate effectively. These estimates are based
on the assumption that a consultant or a nurse

Figure 4. Analysis results with total number of beds, DCR and BOR.

Figure 5. Relationship between BOR and total number of consultants.
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spends the entire workload treating patients (typic-
ally 1950 h per year). This is a strong assumption
and not realistic.

In the NHS, a full-time equivalent (FTE) is 37.5 h
per week (around 1950 h per year) (NHS improve-
ment, 2017). As seen in Table 5, the required num-
ber of consultants and nurses in all inpatient
services, are determined by assuming that all staff
are in full time employment (i.e. 1 FTE). However,
consultants or nurses may choose to have a lower
FTE rate instead of full time contracts, or the hos-
pital management may employ on a different FTE
rate. More importantly, staff do not spend all of
1950 h per year treating patients.

Therefore, the estimates in Table 5 (number of
consultants and nurses) needs to be adjusted, 1)
according to the percentage of their time spent on
treating patients, and 2) various FTE employment
contracts (for example, a hospital may have a com-
bination of consultants, some working full time,
some 0.5 FTE, etc.). In addition, consultants are typ-
ically employed in an inpatient service for a certain
rate of their working hours and the remaining part
is consumed by consulting in an outpatient clinic,
or vice versa. Considering these reasons, the
inpatient specialties will require more than the num-
ber of consultants or nurses stated in Table 5.
Therefore, we specified the number of staff working
with different FTE rates (i.e. 1.0, 0.8, 0.5, and a case
mix). A case mix includes 50% of consultants work
with 1.0 FTE, 30% with 0.8 FTE, and the remaining
with 0.5 FTE. We also considered the percentage of
time a typical consultant or a nurse treats patients
within their contractual hours, i.e. 20%, 40% and
60%. For example, 20% means that a consultant on
average spends 20% of his/her time treating patients,
and the remaining time is allocated for other activ-
ities (i.e. writing reports, meetings, training, etc.).
Let’s assume that consultants at PAH work with a
case mix of FTE’s, and on average they spend 40%
of their time treating patients. The inpatient services
will need 109 consultants for the 8 specialties plus a

group of “Other” specialties (see Table 6). Similar
interpretations can be made for nurses in Table 7.

5. Conclusion and future work

The increasing pressures on the healthcare system
in the UK and other parts of the world are well
documented. Widespread coverage in the media
backed with findings from healthcare professionals
and academics (using real life data) provides evi-
dence of such strains (the NHS is no different).
Problems surrounding these pressures include budg-
eting constraints, increasing demand, disjointed care
and lack of workforce. These pressures will not be
resolved anytime soon. Austerity in the UK will
continue beyond 2020, and the impact of Brexit is
likely to cause further disruptions to the UK econ-
omy, with a knock-on effect on all public services
(including healthcare).

In these circumstances ‘business as usual’ in the
NHS is not an option. This may mean a major shift
in the decision-making process in relation to cap-
acity (resource) requirements. The experiences of
the authors suggest that key decision makers in
most NHS hospitals rely heavily on basic statistical
analysis (e.g. average number of admissions, average
length of stay, average bed occupancy rates). A sim-
ple analysis of activity around averages (or any
other statistical measures) within a specialty or a
service will not be adequate for an effective solution
of the problem. A holistic approach that integrates
the entire hospital’s specialties is needed, as all the
services are interconnected, and cannot be assumed
to be independent of each other. There is an
increasing demand, and capacity shortages across all
the services in the NHS, thus modelling at this level
of detail is a necessity.

After an exhaustive review of the literature we
notice that whole hospital models are rare, however
hybrid methodologies which combine forecasting,
simulation and optimization techniques are now
appearing. We developed a model that linked each

Figure 6. Relationship between BOR and total number of nurses.
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and every service and specialty within A&E, out-
patient and inpatient services, with the aim of, (1)
forecasting demand for all the specialties (including
first/follow up outpatient attendances, elective/non-
elective inpatient admissions, and A&E admissions),
(2) capturing all the uncertainties of patient pathway
within a hospital setting to facilitate the testing of
wide range of scenarios in the safety of a validated
simulation model, (3) provide a precise estimate of
the required bed capacity (and staff) needs. In terms
of whole hospital modelling, our model differs from
previously published examples in two ways; first,
our model is more complex and therefore can be
used for operational level decisions, and second, the
data analysis part of our model is more elaborate
than the other whole hospital models and therefore
can generate more insight, which is required for bet-
ter customization.

The authors had the opportunity of presenting to
the boards of directors of many NHS Trusts in
England, and time and time again were confronted
with the following type of question: “According to
your simulation findings you clearly show the esti-
mated average and the confidence intervals (CI);
exactly how many beds should we have in our serv-
ice?”. From experience it can be difficult to get the
service manager to understand CI and, for the right
reasons, they are not entirely convinced with the
estimated average. The optimization enables the
analyst (developer) to provide a precise estimate.
The entire hospital modelling framework will

therefore facilitate the service planning and decision
making and, more importantly, speed up the pace
of change in the specialty or service of interest.

Given the complexity of a hospital with services
across 31 specialties (outpatient, inpatient and
A&E), a very large-scale analysis of data was carried
out using both local data and the hospital episodes
statistics dataset. We developed in total 760 forecast-
ing models to capture demand broken down by age
group, and a further 600 frequency distributions
were established, all to be integrated into the simu-
lation model. A total of 85 constraints along with
objective functions were developed for the optimiza-
tion model. Possible risks of harm for nurses related
to work overload in hospitals were taken into con-
sideration in the optimization model. At each stage,
the decision support tool was designed, verified and
validated with specialists (consultants, service man-
agers, and directors).

According to our findings a total of 486 beds is
adequate for the hospital to maintain the 85% bed
occupancy target. We also noticed that the beds
were inappropriately distributed. For instance, at
present general medicine has 88 beds, whereas the
FSO results indicate that it should have around 115
beds in order to cope with existing demand. On the
other hand, other specialties have 91 beds, but only
need around 11. Inappropriate bed allocation is a
major concern amongst many healthcare providers.
Goulding et al. (2015) explored patient’s perspec-
tives of the quality and safety of the care received

Table 6. Number of consultants depending on different FTE ratios for the base model. FTE: Full time equivalence, Case Mix
is 50% with 1.0 FTE, 30% with 0.8 FTE, 20% with 0.5 FTE.

Code Name

1.0 FTE 0.8 FTE 0.5 FTE Case Mix

20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

1 General surgery 20 10 7 25 13 8 40 20 13 30 15 10
2 Trauma & Orthopaedics 15 8 5 20 10 7 30 15 10 20 10 7
3 General Medicine 35 18 12 45 23 15 70 35 23 45 23 15
4 Cardiology 10 5 3 15 8 5 20 10 7 15 8 5
5 Paediatrics 5 3 2 10 5 3 10 5 3 10 5 3
6 Gynaecology 5 3 2 10 5 3 10 5 3 10 5 3
7 Others 5 3 2 10 5 3 10 5 3 10 5 3
8 Geriatric Medicine 40 20 13 50 25 17 80 40 27 55 28 18
9 Obstetrics 15 8 5 20 10 7 30 15 10 20 10 7
Total 150 78 51 205 104 68 300 150 99 215 109 71

Table 7. Number of nurses depending on different FTE ratios for the base model. FTE: Full time equivalence, Case Mix is
50% with 1.0 FTE, 30% with 0.8 FTE, 20% with 0.5 FTE.

Code Name

1.0 FTE 0.8 FTE 0.5 FTE Case Mix

20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

1 General surgery 100 50 33 125 63 42 200 100 67 130 65 43
2 Trauma & Orthopaedics 75 38 25 95 48 32 150 75 50 100 50 33
3 General Medicine 185 93 62 235 118 78 370 185 123 240 120 80
4 Cardiology 50 25 17 65 33 22 100 50 33 65 33 22
5 Paediatrics 20 10 7 25 13 8 40 20 13 30 15 10
6 Gynaecology 25 13 8 35 18 12 50 25 17 35 18 12
7 Others 20 10 7 25 13 8 40 20 13 30 15 10
8 Geriatric Medicine 240 120 80 300 150 100 480 240 160 310 155 103
9 Obstetrics 75 38 25 95 48 32 150 75 50 100 50 33
Total 790 397 264 1000 504 334 1580 790 526 1040 521 346
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during their inpatient stay on a clinically inappro-
priate hospital ward and found that patients have
reported dissatisfaction in terms of preference
and belonging.

The FSO approach also established the required
number of consultants and nurses within inpatient
services. In the majority of instances, the NHS has
varying FTE contractual agreements, particularly
amongst consultants, where they may have multiple
roles, e.g. as a researcher, academic roles, private
clinics, etc. The assumption that they work full time
is wrong. Based on a mix of FTE contractual agree-
ments, if a consultant spends 20% of their workload
physically treating patients, then the inpatient serv-
ices will require 215 consultants.

These results can be immensely useful for the
management in a number of key areas: (1) capture
demand for the entire hospital for each specialty, (2)
observe the impact of change (such as change in
resources) on key performance metrics before it is
implemented in practice, and (3) determine the
optimal resource requirements with confidence
(namely staff and beds) in order to meet demand
now and into the future. These results will bring a
different perspective to key decision makers with a
DSS for short and long term strategic planning to
make rational and realistic plans.

The FSO technique has a number of limitations.
Outpatient services play a crucial role within a hos-
pital; a typical NHS Trust could deal with over
300,000 attendances per year. The forecasting tech-
niques are able to capture outpatient demand for
each specialty, broken down by age and first/follow
up referrals. The simulation model captures the
entire outpatient services pathway with the flexibility
of testing wide range of scenarios, but the optimiza-
tion model does not determine the required resour-
ces, such as consultation room requirements, clinic
slot requirements, outpatient staff needs, etc.
Likewise, the optimization should also focus on
A&E departments and determine the required num-
ber of emergency beds in order to minimize patient
waiting times (i.e. less than the four-hour target
from admission to discharge set by the Department
of Health in England). Future research can be
directed towards integrating these issues into the
optimisation model.
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