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Abstract: Accurate determination of river flows and variations is used for the efficient use of water
resources, the planning of construction of water structures, and preventing flood disasters. However,
accurate flow prediction is related to a good understanding of the hydrological and meteorological
characteristics of the river basin. In this study, flow in the river was estimated using Multi Linear
Regression (MLR), Artificial Neural Network (ANN), M5 Decision Tree (M5T), Adaptive Neuro-Fuzzy
Inference System (ANFIS), Mamdani-Fuzzy Logic (M-FL) and Simple Membership Functions and
Fuzzy Rules Generation Technique (SMRGT) models. The Stilwater River in the Sterling region of the
USA was selected as the study area and the data obtained from this region were used. Daily rainfall,
river flow, and water temperature data were used as input data in all models. In the paper, the
performance of the methods is evaluated based on the statistical approach. The results obtained from
the generated models were compared with the recorded values. The correlation coefficient (R), Mean
Square Error (MSE), and Mean Absolute Error (MAE) statistics are computed separately for each
model. According to the comparison criteria, as a final result, it is considered that Mamdani-Fuzzy
Logic (M-FL) and Simple Membership Functions and Fuzzy Rules Generation Technique (SMRGT)
model have better performance in river flow estimation than the other models.

Keywords: artificial neural network; river flow; fuzzy logic; M5 decision tree; prediction; SMRGT

1. Introduction

Accurate prediction of the relationship between rainfall-runoff on a drainage basin, prediction of
river flows, and changes are used for the efficient use of water resources, planning of the construction
of water structures and prevention of flood disasters. With it, the correct flow forecasts, hydrological
and meteorological characteristics of the river basin are also related to better understanding. This
estimate can be made for a short period of time, such as a single stormy period, or to cover long periods
such as monthly or yearly. However, changes in local and regional characteristics make it difficult
to determine the relationship between precipitation and flow. In the field of hydrology and water
resources, artificial neural networks (ANN), which are one of the black box modeling methods, have
been used as a suitable alternative for modeling the precipitation flow relationship. Hsu et al. [1] used
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ANN to estimate the flow in rivers. Fernando and Jayawardena [2], predicted flow using radial-based
function (RBF) networks. Tokar and Johnson [3] estimated the daily flow using the ANN model. ANN
can also be applied to flow estimation [4,5], reservoir inlet flow estimation [6], and sediment yield
modeling [7,8].

Zadeh [9] developed the relative set theory with the concept of relative membership and proposed
a fuzzy optimum theory with a better practical application in the field of engineering. Nayak et al. [10]
used the Mamdani approach (Mamdani and Assilian, [11]) in some hydrological applications for
precipitation flow modeling. Gowda and Moyya [12] applied the fuzzy logic model to estimate
the flow for the Nethravathi River Basin in Dakshina Kannada. The fuzzy logic approach was also
applied for flood estimation (Chang et al. [13]), precipitation (Maskey et al. [14]), sediment transport
(Tayfur et al. [15]), reservoir study (Tilmant et al. [16]), critical submergence (Kocabaş et al. [17]), oxygen
demand (Ozel et al. [18]) and rainwater infiltration (Hong et al. [19]).

The M5 decision tree model (M5T) is also one of the artificial intelligence methods that have been
widely used recently in hydrological prediction. Zahiri and Azamathulla [20] applied the M5T model
in the river flow estimation. Sattari et al. [21], predicted daily flows of the Sohu river in Turkey using
the M5 tree model. Singh et al. [22] estimated the mean annual flood using a Backpropagation Neural
Network (BNN) and the M5 model tree. Kisi et al. [23], used the M5 tree model in flow prediction
based on laboratory data. Al-Abadi [24], investigated the mimic stage–discharge relationship at the
Gharraf River system, southern Iraq, using a multilayer perceptron with a back-propagation artificial
neural network (MLP), the M5 decision tree model, and the Takagi–Sugeno (TS) inference system.
Shaghaghi et al. [25] applied the M5 tree model to predict the dimensions of regime rivers (slope,
width, and depth). The use of artificial intelligence techniques has also recently increased in water
resources management and hydrological studies [26–30].

In this paper, the river flow was estimated using Multiple Linear Regression (MLR), Adaptive
Neuro-Fuzzy Inference System (ANFIS), Mamdani-Fuzzy Logic (M-FL), M5 Decision Tree (M5T),
Artificial Neural Network (ANN) and Fuzzy Rules Generation Technique (SMRGT) models. The aim
of this study is to introduce a new method, Fuzzy Mamdani - SMRGT for accurately estimation of
river flows.

2. Materials and Methods

2.1. Study Area

In this study, the Stilwater river in the Sterling region, Massachusetts, USA was selected as the
study area. The station shown in Figure 1 is located in the town of Worcester in Sterling, USA. Data
obtained from the United States Geological Research Institute (USGS [31], station no: 01095220) for
2014–2017 were used. This region has a warm and mild climate and the rainfall is quite high, even in
the driest months. The drainage area is 29.1 mi2. Three-year meteorological data for this station, which
was administered by the Massachusetts–Rhode Island Water Science Center, located on the 42◦24′39” N
latitude and 71◦47′30” E longitude, were used. Daily data were recorded at 15-min intervals and
transmitted hourly via satellite [31]. Stilwater river discharge changes (in rainy/non-rainy season)
between 2014 and 2017 were given in Figure 2a,b. The elevation of the gage is 400 ft above the National
Geodetic Vertical Datum of 1929, from a topographic map [31].

2.2. Methods

Multiple Linear Regression (MLR), Adaptive Neuro-Fuzzy Inference System (ANFIS), Mamdani-
Fuzzy Logic (M-FL), M5 Decision Tree (M5T), Artificial Neural Network (ANN) and Fuzzy Rules
Generation Technique (SMRGT) models were chosen in estimating the river flow. In all models, daily
precipitation (P), water temperature (T), and lagged 1-day flow (Qt − 1) parameters were used for the
estimation of the river flow (Qt). In this study, the inputs affecting the river flow were investigated
and the parameters giving the best optimal performance in the model were selected according to the
trial result.
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non-rainy season.

2.2.1. Multiple Linear Regression (MLR)

It is a method used to find out how much a dependent variable is affected and the value of the
independent variables affected.

Dependent variable y can be expressed in terms of independent variables of x1, x2, ..., xp and the
relationship between them is written as in the equation below;

y = a0 + a1x1 + a2x2 + . . .+ apxp + ε (1)

In Equation (1), a0, a1, a2, . . . , ap are called regression coefficients. ε is the error component
reflecting the difference between the real dependent variable (y) and the fitted linear regression
relationship. Any regression coefficient ap gives the expected amount of change in the y variable versus
one-unit change in xp when other variables are held constant, that is, when other variables have no
effect. In other words; a0, a1, a2, . . . , ap are the weights of the relative contribution of the independent
variables to the determination of y. Therefore, ap is often referred to as a partial regression coefficient.
a0 is called a breakpoint or constant and represents the value of the dependent variable when all xp

variable values are zero.

2.2.2. Artificial Neural Network (ANN) Model

Artificial neural networks (ANN) are systems consisting of process elements that are connected
to each other with different weights that are inspired by the structure of nerve cells in the human
brain. Among the artificial neural network (ANN) methods, the most commonly used method is
the feed-forward back-propagation ANN model, which operates according to the principle of back
propagation of errors. An artificial neural network cell consists of five main parts: the input layer,
variable weight multipliers, total function, activation function, and output layer. In Figure 3, a schematic
diagram of a three-layer artificial neural network is given. According to Figure 3, the river flow time
series (Qt − 1), water temperature (Tt) and Precipitation (Pt) were used to estimate the river flow (Qt).
The time series is used for estimating the river flow in dry periods when there is no rain affecting the
river basin.
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Figure 3. Schematic diagram of a three-layer ANN that was used in this study.

In Figure 3, Wij and Wjk, respectively, represent the weight of the connection between the input,
hidden and output layers, and “b” is the bias term. Output estimation values for ANN are obtained by
adding the bias multiplied by the input values and weighted averages (w). These values are coefficient
values that express the effect of the previous input data on the treated element. These coefficients, which
initially receive random weight values, constantly vary during the training phase by comparing the
predictive outputs to the actual outputs, and the error amounts are propagated backward until the link
weight values are adjusted to minimize errors. In this study, the feedback propagation ANN method
was used. The technique updates the weights and bias values according to the Levenberg–Marquardt
optimization. It minimizes a combination of squared errors and weights, and then determines. As a
transfer function; “tansig” was used for the hidden layer, “purelin” was used for the output layer and
“trainlm” was used for Back-propagation network training. In addition, the number of epochs was 1000,
the momentum coefficient was 0.80, and the learning rate refresh coefficient was 1.15. The ANN model
consisted of 3 inputs, 1 hidden layer with 6 nodes, and 1 output layer (Figure 3).

2.2.3. M5 Decision Tree Model (M5T)

Decision trees are a tree-shaped decision structure type whose classes are learned by using the
induction method from the sample data. A decision tree is a structure used by applying simple decision
steps, dividing large amounts of records into very small groups of records. With each successful division
operation, members of the result groups become much more similar to each other. Decision trees are a
useful solution in many classification problems using complex databases and in complex or erroneous
information. Decision trees, which have predictive and descriptive features, are the most widely used
technique among the classification models due to their easy installation, easy interpretation, easy
integration into database systems, and their better reliability. The dividing criterion is based on the
standard deviation of the subset values. The mathematical formula for calculating standard deviation
reduction (SDR) is:

SDR = SD(T) −
∑ Ti

T
× SD(Ti) (2)

In Equation (2), T represents a group of samples reaching the node, Ti represents a subset of
samples that are the result of the potential cluster, and SD represents the standard deviation. After
examining all possible structures, a structure that has the maximum expected error reduction would
be picked out. This dividing process often creates a great tree-like structure that leads to an overfit
structure. A general M5 tree is given in Figure 4.
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2.2.4. Mamdani Fuzzy Logic (M-FL) Model

The Mamdani system was first studied (Mamdani and Assilian, [32]) in 1975. This system is
characterized as very convenient due to its proximity to human behavior among fuzzy logic modeling
systems. It is the ancestor of all fuzzy logic models. Its simplicity in modeling has expanded the use of
the Mamdani system. It has been used to try to facilitate the solution of the problems through verbal
expression, thanks to the fuzzy logic of the models that are not fully known numerically or that have
mixed equations. Fuzzy inference is how input or input groups are associated with an output using
the fuzzy logic method.

In fuzzy logic models, connections between inputs and outputs are provided using rules in the
rule base. A fuzzy logic controller consists of three basic parts: fuzzification, a rule-based extraction
mechanism, and defuzzification. A typical example of a “Mamdani-Fuzzy Logic” starts as follows.
Input parameters are created for model analysis and the fuzzification process is started. Fuzzy sets
ranging from 0–1 are created for each input parameter. These clusters can have different shapes such
as triangle, trapezoidal or curvilinear. Then, with our input–output parameters, rules such as fuzzy
“If-Then rules” are created. It rinses with the rinsing process, digitizing our fuzzy data and printing.
The flow chart of all these processes is shown in Figure 5.Water 2020, 12, x FOR PEER REVIEW 7 of 22 
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There are two fuzzy inference systems most commonly known in the literature. These inferences
are Mamdani and Takagi–Sugeno (Adaptive Neuro-Fuzzy Inference System, ANFIS). Mamdani’s
fuzzy inference method is the most commonly used fuzzy method. The Mamdani inference system
takes output membership functions as fuzzy sets. A fuzzy set occurs for each output. Fuzzification
is indispensable for achieving precise results. This approach is suitable for verbal expressions and
when there is not a lot of data. In contrast to Mamdani, the ANFIS (Takagi–Sugeno, [33]) approach
uses only numerical data and verbal data cannot be entered. From this point, the ANFIS approach
is a data-driven method and gives better results when digital input–output data is provided. ANFIS
operates according to the “If-Then” rule and the structure uses the Sugeno fuzzy rules. According to
the “if-Then” rule, if x is A1, y is B1; where A1 and B1 are linguistic values defined by fuzzy sets. It is
possible to introduce fuzzy systems with logical models consisting of “If-Then” membership rules and
membership functions.

Mamdani inference is known as the first control system established by the fuzzy set theory.
Mamdani was able to control the combination of the steam engine and boiler by reviewing a set
of linguistic control rules found by professional human operators (Mamdani, [34]). His work was
based on Zadeh’s study (Zadeh, [9]) on complex systems and fuzzy algorithms for decision-making.
The inference process is different from Zadeh’s work, but the basic idea is the same (MathWorks, [35]).
Due to Mamdani and Assilian, [32] the first inference method is the most common in practice and
literature. To understand the Mamdani structure, we consider a simple two-rule system, where each
rule contains two premises and one conclusion. This is similar to a fuzzy system with a double input
and a single output. A fuzzy system with two inputs, x1 and x2 (premise), and a single output, y (as a
result), is explained by a collection of linguistic IF-THEN proposals in Mamdani form:

IF x1 is An
1 and x2 is An

2 THEN y1 is Bn
1 , for n = 1, 2, . . . , (3)

where An
1 and An

2 are the fuzzy sets representing the kth antecedent pairs and Bn
1 is the fuzzy set

representing the consequent. In this study, 3 different “LOW”, “MEDIUM” and “HIGH” subsets were
determined separately for the water temperature, precipitation, and flow parameters according to
Figure 6 and the following rules were created.

IF Temperature is “LOW” and Precipitation is “MEDIUM” THEN Flow is “HIGH” (4)Water 2020, 12, x FOR PEER REVIEW 8 of 22 
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In Mamdani inference, the result of the “if-Then” rule is defined by a fuzzy set. The fuzzy output
set of each rule is reshaped by a matching number in the system, and all of the fuzzy sets obtained as a
result of this reshaping must be collected and then rinsed (Wang, [35]). Mamdani Fuzzy Logic has
advantages such as proximity to intuitive human perception and logic (MathWorks, [36]). Mamdani’s
advantage over Sugeno’s works is to expand Mamdani’s current model, that is, the multi-output
model [37].

According to Figure 6, triangular membership functions are used for water temperature, precipitation
and flow. The fuzzy subset was tried and determined separately.

2.2.5. Adaptive Neuro-Fuzzy Inference System (ANFIS) Model

This method, also known as the Sugeno type Fuzzy system, consists of a combination of the fuzzy
inference system (FIS) and artificial neural networks (ANN). ANFIS systems are the same as Mamdani
type fuzzy systems and there are differences in the output result system.

Numerical data cannot be found directly after the output unit of fuzzy systems. The inability
to obtain numerical data as a result of fuzzy systems makes it difficult to use the systems from an
engineering point of view. Since the printouts are fuzzied in their original form, they cannot be used
directly in engineering models. Various studies have been carried out by Takagi and Sugeno [33] and
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Sugeno–Kank [38] in order to use the fuzzy systems in the equations established with Aristotle’s logic.
Figure 7 shows the Takagi–Sugeno–Kank model.
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Figure 7. Takagi–Sugeno–Kank Fuzzy System.

In the Takagi–Sugeno–Kank system, the entrance and fuzzification steps are the same as the
Mamdani system. The difference is observed in the output functions. The output functions in this
system are fixed or linear. One output data is obtained for each rule. This system is very suitable for
mathematical analysis, but it has been observed that it is more unsuccessful than Mamdani in showing
an affinity to human behavior.

2.2.6. Simple Membership Functions and Fuzzy Rules Generation Technique (SMRGT)

For the SMRGT method, firstly, dependent and independent variables are determined. In this
study, the determination of dependent variables, such as air temperature, precipitation, and the flow
variable, was attempted. The minimum and maximum upper limits of these variables were determined
and fuzzy clusters (high, medium, low) were determined accordingly. Shapes of the membership
functions (triangle, trapeze) were decided. Triangular membership functions are generally preferred in
the literature. Then, by determining the unit width, core, and key values of each triangle membership
function, membership function processes are completed. During the training process, fuzzy rules are
created for each parameter and the process of getting results is started. The flow chart of SMRGT is
represented in Figure 8. Researchers can examine more information about SMRGT in Altaş et al. [39],
Toprak [40] and Toprak et al. [41,42] ‘s works.

For the prediction model, the unit width (UW), core value (Ci), and key values (Ki) of the fuzzy
sets were determined (Figure 9). In order to determine these values, the change interval (VR) of the
metrics must be known first. The lowest and highest values of the metrics specified in the second stage
were used to determine the change interval. Equation (5) shows the change interval (VR) formula. The
parameters used to create membership functions are calculated by the following equations [39–41].

VR = (T, P, Q)max − (T, P, Q)min (5)

Ci =
VR

2
− (T, P, Q)min (6)

In this paper, calculations were made for minimum and maximum values in the training process
for Temperature (T), Rainfall (P) and Flow (Q) values. The nu value used in these equations indicates
the total number of right triangles. According to Figure 9, there are two right triangle membership
functions in the sides and 2 in the middle (1 isosceles triangle). Calculations for UW, O, EUW, K1, K2

values were performed with the Equations (7)–(11) below.
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UW =
VR

nu
(7)

O =
UW

2
(8)

EUW =
VR

nu
+ O (9)

K1 = (T, P, Q)min +
EUW

3
(10)

K2 = (T, P, Q)max −
EUW

3
(11)

Equations between (Equations (7) and (11)) were used to construct the SMRGT model 1 with
borders of membership function and key values. According to Figure 9, the “K1, K1 + UW, K2-UW and
K2” values represent the selected triangle membership/cluster limit values. “UW” indicates the unit
width and nu is the number of right-angled triangles. The expanded base width (EUW) is needed to
find the “K1, K2” limit values and to prevent neighbouring clusters from being nested. The “O” value
is an expression used to find the EUW, K1 and K2 values.
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After determining the ranges and structure of the Membership Functions (MFs), the functions of
the SMRGT model are given in Figures 10–12.

For the SMRGT method, 7 subset membership functions were selected. It was observed that the
number of errors decreased as the number of memberships increased. In the SMRGT method, the limit
values (Figures 10–12) were calculated manually.
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Essentially, the SMRGT model is also made with the fuzzy-Mamdani technique. However, fuzzy
sub-sets are chosen randomly with the conscientious technique and this makes modeling and model
education difficult. However, in the SMRGT model, the fuzzy subset and variable ranges are selected
based on observations and experiences. This approach technique makes it easier and more convenient
to reflect the physics of the event to the fuzzy model.

3. Results and Discussion

In this study, the flow rate in the river was estimated by using artificial intelligence techniques
and Multi Linear Regression methods. The results were compared with each other. A total of 1095
data belonging to the years 2014–2017 were used in the station. Overall, 75% of all data was used
for training and 25% was used for the testing. Daily Temperature (Tt), precipitation (Pt) and lagged
day flow rate (Qt − 1) were used for estimating the flow (Qt) in the river. In all models, 820 data were
trained and 275 data were applied during the test phase.

In order to determine the success of the models used to estimate the flow value in the river, MSE
(square error) MAE (mean absolute error) and R (correlation coefficient), given in Equation (12) [43]
and Equation (13) [44], were used. Here n represents the number of data for the flow amounts of Q.

MSE =
1
n

n∑
i=1

(
Qobservation −Qprediction

)2
(12)

MAE =
1
n

n∑
i=1

∣∣∣Qobservation −Qprediction

∣∣∣ (13)

The performance of the model results is shown in Table 1. When Table 1 was examined, all models
gave similar results. According to the MSE, MAE, and R criteria, the best results were obtained in the
M-FL and SMRGT models. The M5T models gave the worst results in all criteria.

Table 1. MSE, MAE and R parameters for the comparison of model results.

Models MSE (m3/s)2 MAE (m3/s) R

MLR 0.618 0.347 0.902
ANN 0.601 0.349 0.907
M5T 0.747 0.370 0.878

ANFIS 0.611 0.345 0.903
M-FL 0.595 0.338 0.917

SMRGT-FL 0.535 0.318 0.927

MSE: Mean square error, MAE: mean absolute error, R: correlation coefficient.
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Daily water Temperature (Tt), Precipitation (Pt) and lagged day flow rate (Qt − 1) were used for
MLR flow (Qt) estimations. The MLR model established using training data is given in Equation (14).
This equation was also applied to test data.

Qt = 0.2959− 0.0146 × Tt + 0.0277× Pt + 0.8067× Qt − 1 (14)

MLR model variation and scatter graphs are given in Figure 13. When scatter graphs for testing
data were analyzed, the correlation coefficient was obtained as R: 0.902 and MLR values were seen to
be close to the actual values.
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Feedback propagation network is used for ANN. ANN model results for flow estimation are given
in Figure 14. When the variation graph in Figure 14 was examined, it was seen that the measurement
and estimation results were similar to each other as in the other models. When the scatter graph in
Figure 14 was examined, it was seen that the correlation coefficient was 0.907.
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Figure 14. Observed and ANN model for river flow test data: (a) variation graph, (b) scatter graph.

The variation and scatter graphs of M5 decision tree (M5T) model results are given in Figure 15.
When the graphs were examined, it was seen that there was a good correlation between the measurement
results and the estimation results. Although the correlation coefficient was R: 0.878, it showed the
worst performance with the lowest correlation among all models.
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Figure 15. Observed and M5T model for river flow test data: (a) variation graph, (b) scatter graph.

In ANFIS analysis, Gaussian parabolic 3 × 3 × 3 Membership Functions (MFs) and Grid partition
section were analyzed with 100 iterations, assuming the output as linear. Variation and scatter graphs
for the ANFIS method are shown in Figure 16. The correlation coefficient is seen as R: 0.903 in Figure 16.
As seen in the figure, ANFIS results were close to the observed values. As shown in Table 1, ANFIS
and MLR methods had similar correlations (R: 0.902). When we look at the MSE and MAE criteria,
they have similar low error rates.
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Figure 16. Observed and ANFIS model for river flow test data: (a) variation graph, (b) scatter graph.

The scatter and variation graphs of the M-FL method are shown in Figure 17. When the variation
graph was examined, it was seen that the predicted values gave closer results to the actual values. The
scatter diagram also shows a high correlation between the actual values and the estimated values.
Compared to all models, it can be seen from Table 1 that M-FL model results have lower error rates
(MSE: 0.595; MAE: 0.338) and higher correlation (R: 0.917)
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Figure 17. Observed and M-FL model for river flow test data: (a) variation graph, (b) scatter graph.

Simple Membership Functions and Fuzzy Rules Generation Technique (SMRGT) model results
for flow estimation are given in Figure 18. When the variation graph in Figure 18 was examined, it
was seen that the predicted values gave closer results to the actual values. When the scatter graph in
Figure 18 was examined, it was seen that the correlation coefficient was 0.927. In Table 1, it was found
that the SMRGT model showed the best performance among all models followed by the M-FL model.
Compared to all models, it can be seen from Table 1 that SMRGT model results had the lowest error
rates (MSE: 0.535; MAE: 0.318) and the highest correlation (R: 0.927).



Water 2020, 12, 2427 18 of 21

Water 2020, 12, x FOR PEER REVIEW 18 of 22 

 

 
(b) 

Figure 17. Observed and M-FL model for river flow test data: (a) variation graph, (b) scatter graph. 

Simple Membership Functions and Fuzzy Rules Generation Technique (SMRGT) model results 

for flow estimation are given in Figure 18. When the variation graph in Figure 18 was examined, it 

was seen that the predicted values gave closer results to the actual values. When the scatter graph in 

Figure 18 was examined, it was seen that the correlation coefficient was 0.927. In Table 1, it was found 

that the SMRGT model showed the best performance among all models followed by the M-FL model. 

Compared to all models, it can be seen from Table 1 that SMRGT model results had the lowest error 

rates (MSE: 0.535; MAE: 0.318) and the highest correlation (R: 0.927). 

 

(a) 

Water 2020, 12, x FOR PEER REVIEW 19 of 22 

 

 

(b) 

Figure 18. Observed and SMRGT model for river flow test data: (a) variation graph, (b) scatter graph. 

As is known, ANN, M5 Tree and ANFIS models are black-box models. They cannot adequately 

consider the physics of the event between input and output. However, the Fuzzy Mamdani and 

SMRGT models presented in this study offer the opportunity to reflect the physics of the event to the 

model using measurement changes, experience, and knowledge. It was observed that the 275 data 

used in the testing of the models did not reach the flow peak values in all models at approximately 

five extraordinary flood flow rates. Therefore, it was observed that the correlation values decreased. 

4. Conclusions 

In this study, daily average water temperature, precipitation, and lagged day flow values were 

used for flow prediction. A total of 1095 daily data belonging to the year range of 2014–2017 in 

Worcester county of Sterling region, USA were examined. Flow in the river was estimated by using 

Multi Linear Regression (MLR), Artificial Neural Network (ANN), M5 Decision Tree (M5T), 

Adaptive Neuro-Fuzzy Inference System (ANFIS), Mamdani-Fuzzy Logic (M-FL) and Simple 

Membership Functions and Fuzzy Rules Generation Technique (SMRGT) models. The best models 

were found by applying statistical indicators such as MSE, MAE, and R. The results obtained in this 

paper are given below. 

 The SMRGT model shows the best statistical performance compared to the other models. (MSE: 

0.535 m6/s2, MAE: 0.318 m3/s and R: 0.927). 

 The M-FL model exhibits a better performance (MSE: 0.595 m6/s2, MAE: 0.338 m3/s and R: 0.917) 
than the ANN, ANFIS, M5T and MLR models. 

 The MLR and ANFIS models have nearly the same results. For MLR, MSE: 0.618 m6/s2, MAE: 

0.347 m3/s and R: 0.902. For the ANFIS model, MSE: 0.611 m6/s2, MAE: 0.345 m3/s and R: 0.903. 

 The ANN method gives better results than the MLR, ANFIS and M5T methods (MSE: 0.601 m6/s2, 

MAE: 0.349 m3/s and R: 0.907). 

 The M5T method shows the lowest performance among all models (MSE: 0.747 m6/s2, MAE: 

0.370 m3/s and R: 0.878). 

According to the MSE, MAE, and R criteria, the worst results were obtained in the M5T model. 

The MLR, ANN, and ANFIS results were closer to each other. The best results were obtained in the 

M-FL and SMRGT models. Compared to all models, the SMRGT model results had the lowest error 

Figure 18. Observed and SMRGT model for river flow test data: (a) variation graph, (b) scatter graph.

As is known, ANN, M5 Tree and ANFIS models are black-box models. They cannot adequately
consider the physics of the event between input and output. However, the Fuzzy Mamdani and
SMRGT models presented in this study offer the opportunity to reflect the physics of the event to the
model using measurement changes, experience, and knowledge. It was observed that the 275 data
used in the testing of the models did not reach the flow peak values in all models at approximately five
extraordinary flood flow rates. Therefore, it was observed that the correlation values decreased.

4. Conclusions

In this study, daily average water temperature, precipitation, and lagged day flow values were
used for flow prediction. A total of 1095 daily data belonging to the year range of 2014–2017 in Worcester
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county of Sterling region, USA were examined. Flow in the river was estimated by using Multi Linear
Regression (MLR), Artificial Neural Network (ANN), M5 Decision Tree (M5T), Adaptive Neuro-Fuzzy
Inference System (ANFIS), Mamdani-Fuzzy Logic (M-FL) and Simple Membership Functions and Fuzzy
Rules Generation Technique (SMRGT) models. The best models were found by applying statistical
indicators such as MSE, MAE, and R. The results obtained in this paper are given below.

• The SMRGT model shows the best statistical performance compared to the other models. (MSE:
0.535 m6/s2, MAE: 0.318 m3/s and R: 0.927).

• The M-FL model exhibits a better performance (MSE: 0.595 m6/s2, MAE: 0.338 m3/s and R: 0.917)
than the ANN, ANFIS, M5T and MLR models.

• The MLR and ANFIS models have nearly the same results. For MLR, MSE: 0.618 m6/s2, MAE:
0.347 m3/s and R: 0.902. For the ANFIS model, MSE: 0.611 m6/s2, MAE: 0.345 m3/s and R: 0.903.

• The ANN method gives better results than the MLR, ANFIS and M5T methods (MSE: 0.601 m6/s2,
MAE: 0.349 m3/s and R: 0.907).

• The M5T method shows the lowest performance among all models (MSE: 0.747 m6/s2, MAE:
0.370 m3/s and R: 0.878).

According to the MSE, MAE, and R criteria, the worst results were obtained in the M5T model.
The MLR, ANN, and ANFIS results were closer to each other. The best results were obtained in the
M-FL and SMRGT models. Compared to all models, the SMRGT model results had the lowest error
rates and the highest correlation. As a result of this study, the SMRGT methods are recommended for
future hydrological and water resources analysis.

The rainfall flow relationship is a multivariate nonlinear event. For this reason, it is very difficult
to accurately determine all parameters, and parametric modeling of precipitation-flow relationship.
The new artificial intelligence techniques in the presented study are thought to be used in determining
the relationship between precipitation flow depending on past seasonal parameters.
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