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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

The lattice girder, members of which are constructed by use of ready profiles with tubular cross-sections, has a simple but 

an effective structural framing form. In this regard, this study proposes to optimize the design of tubular lattice girders i n a 

way of minimizing its entire weight and joint displacement and maximizing its load-carrying capacity considering the design 

codes of API RP2A-LRFD. As an optimization tool, a multi-objective optimization methodology named pareto archived 

genetic algorithm (PAGA) was utilized. The search capability of PAGA was improved by involving a designer module for 

automatically creation of a lattice girder form. The improved PAGA has a big responsibility of increasing the convergence 

degree of optimal designs against the stability problem. Furthermore, the content of this study is enriched  by evaluating the 

computing efficiency of PAGA with respect to several multi-objective optimization algorithms. Consequently, the improved 

PAGA achieves to explore the optimal lattice girder designs with the higher convergence, diversity and capacity degr ees. 

Therefore, the proposed optimum lattice girder design tool is recommended for the designers due to its capability of 

obtaining a wide range of promising designs. 
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1.  Introduction 

 

A lattice girder is constructed through connecting a number of diagonal, 

longitudinal and horizontal structural members. The lattice girder have a big 

advantages over the other structural framing forms (configurations) due to: i) its 

ability of spanning the long distances without requiring either any intermediate 

support or an extra height as in the dome structure ii) its flexibility of having an 

option of using a steel manufacturing factory, iii) its capacity of easily 

disassembling and reassembling, iv) its capability of altering their current 

appearance with the different framing configurations. These significant features 

lead to a decrease in the manufacturing, building, shipping, and maintaining 

costs of lattice girder. Therefore, the lattice girders are preferably utilized in a 

number of structural systems (roofs, bridge, cranes etc.) (Nageim & Macginley 

[1], Talaslioglu [2]). 

Particularly, the development in the steel-related technology accelerates to 

elevate the variety in the available steel profiles. In fact, this development also 

leads to a big differentiation in the current framing configuration of lattice girder. 

Thus, the possibility of making a further decrease in the constructional cost of 

lattice girder correspondingly increases. Moreover, in order to gain an extra 

economic profit in the construction of the tubular lattice girder, it is suggested 

that an optimization tool to be involved into the design stage is the best way. As 

an optimization tool, the evolutionary algorithms (EAs) have already been 

utilized for the weight minimization of various structures (Hasancebi and et al. 

[3]; Saka [4], Seyedpoor and et al. [5]).  

A generational optimal design approach for steel structures has still been 

utilized by a number of designers. According to the generational optimal design 

approach for the tubular lattice girder, a designer firstly determines the shape of 

lattice girder for a certain spanning length and topology. Then, the size of lattice 

girder members is optimized using only a single objective function, for example 

the constructional cost of tubular structure. Thus, the entire weight of tubular 

structure is minimized to obtain a further economic design. The design 

constraints are assigned to check the strengths of the lattice girder members 

according to an allowable member stress and/or joint displacement value 

(Cagnina and et al. [6]; Chen & Huang [7]; Lu and et al. [8]; Torii and et al. 

[9]). However, it has to be taken into account of being governed the strength of 

members by a number of coupled strength-related criteria (Beer and et al. [10]). 

Therefore, the best way is to include the provisions of a national or international 

design specification into the design stage in order to increase the design 

reliability of lattice girder (Talaslioglu [11]).  

Furthermore, the proposed optimal design approach must take the 

responsibility of not only decreasing the entire weight of lattice girder for an 

economic constructional cost, but also achieving to provide an increased load-

carrying capacity along with a higher serviceability for the design of lattice 

girders (Talaslioglu [11]).  

Thus, the generational optimal design approach with a single-objective 

function becomes unfortunately to be insufficient in case of optimizing the 

design of lattice girder considering its load-carrying capacity, serviceability and 

weight at the same time. In order to deal with this design problem, the most 

appropriate remedy is to integrate a multi-objective optimization procedure with 

the proposed design approach. Thus, the designer has also an opportunity to 

make a trade-off analysis among the multiple objective function values. 

Fortunately, EAs are also proved to be the perfect optimization tools with 

multiple objectives (Talaslioglu [11], Salajegheh and et. al. [12]).  

A general multi-objective optimization problem is formulated as: 

min  /  max  ( ) { ( ), ( ),..., ( )}
1 2

=and or F X f X f X f X
K

 (1) 

K objective functions are defined depending on a design (decision) variable 

set X, each which is a member of design variable space DS. When a multi-

objective optimization algorithm (MOA) is executed, a set of random solutions 

is generated. Several solutions are dominated with respect to the other 

remaining ones (fi(X)≤f1(X) and fi(X)≠f1(X), Ɐi Є (1,…,K))) (Srinivas & Deb 

[13]). The dominated optimal solutions are defined as pareto solution. The state 

of pareto dominance is formulated in DS as: 
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The combination of pareto solutions makes a form named Pareto front: 

 * *( ),  = PF F X X P  (3) 

The pareto front is updated throughout the search of MOA. If a new 

dominant pareto solution is never obtained for the current pareto front, then the 

current pareto front is defined as true pareto front. In fact, the current and true 

pareto front has a big importance for not only the trade-off analysis but also a 

performance comparison of MOAs.  

Although evaluating the computing performance of any optimization 

algorithm with a single objective is carried out by only assessing the quality of 

optimal solution, it is difficult for the multi-objective optimization algorithm 

due to the number of objective functions. In order to evaluate the computing 

efficiencies of employed MOAs, the several performance metrics named 

capacity, density, convergence-diversity, coverage are utilized. These 

performance metrics utilized in this study are also called as “unary metrics”, the 

working mechanisms of which are governed by the predetermined 

approximation sets (Zitzler and et al. [14]). The predetermined approximate sets 

are generated using the current and true pareto fronts.  

The measuring metric named “capacity” informs us about the number of 

current pareto solutions. Particularly, this quantity metric has a big importance 

for the optimal engineering design problems since the designer mostly desires 

to make a trade-off analysis considering pareto solutions. Therefore, the larger 
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size of pareto solutions becomes a big advantage for the designer. The density 

metric “average distance” is utilized to measure the density degree of current 

pareto solutions in a way of computing the average value of deviation between 

Euclidian distance and average Euclidian distance values among current pareto 

solutions. The lowest average distance value indicates about a higher density 

degree. The other two diversity metrics “epsilon” and “spread” also measure the 

diversity in a way of computing the maximum distance and covering degrees of 

current pareto solutions with respect to true pareto fronts, respectively (Zitzler 

and et al. [14], Wu and Azarm [15], Deb and et al. [16], Veldhuizen and Lamont 

[17] ). In fact, the quantity metric “epsilon” is also utilized to indicate about the 

pure convergence degree since its minimum value shows about being covered 

the entire region of true pareto front by the current pareto front. This quantity 

metric is computed using both Euclidian and average Euclidian distances among 

the current pareto solutions along with true pareto fronts. In order to measure 

the volume of current pareto solutions with respect to the true pareto fronts, the 

quantity metric “R2” is utilized (Hansen and Jaszkiewicz, [18]). In fact, R2 

indicator has a responsibility for determining both convergence and diversity 

degree of current pareto solutions in a way of utilizing two extreme data points 

named “nadir” (maximum point) and “ideal” (minimum point) along with a 

utility function named “weights” for obtaining the equally scattered solutions 

on a certain range. It is noted that R2 indicator, which is computed depending 

on the use of utility function and data of current pareto fronts, is a member of R 

family. Thus, the value of R2 indicator is obtained as an average value of 

differences between the maximum values of current data and utility functions. 

Whereas Matlab scripts of quality indicators R2 and epsilon are available in 

Reference (Wagner & Kretzschmar [19-20]), the average distance and spread 

indicators are embedded in the Matlab scripts named “distanceAndSpread.m” 

(see the further details in Matlab [21]. 

This study proposes to optimize the design of tubular lattice girder 

considering its load-carrying capacity, serviceability and entire weight. The 

design optimization of lattice girder is carried out using a multi-objective 

optimization tool, named “pareto archived genetic algorithm (PAGA)”. PAGA 

developed by Author has been also utilized to optimize the design of dome 

structures considering the nonlinear structural behavior (Talaslioglu [22]). In 

this study, the exploration capacity of PAGA for the optimization of lattice 

girder design is enhanced through a designer module for automatically creation 

of a lattice girder configuration. While the shape and topology of lattice girder 

is automatically arranged, its size is accordingly chosen among the available 

steel profiles. The computing efficiency of PAGA is assessed through not only 

the tubular lattice girder designs, but also three MOAs named NSGAII, 

EVMOGA and SMSEMOA considering the performance metrics named 

capacity, density, convergence-diversity and coverage. 

In this regard, the outline of this study begins by introducing the working 

mechanism of proposed evolutionary-based multi-objective optimization 

methodology “PAGA” and its integration with design of tubular lattice girder 

in section 2 and 3, respectively. Then, the results outcome from the application 

of employed MOAs for a tubular lattice girder with various spans and loading 

situations along with several benchmark examples are discussed in section 4. 

The summarization of results is given in the conclusion section. 

 

2.  The Working Mechanism of Proposed Evolutionary-Based Multi-

Objective Optimization Methodology: Pareto Archived Genetic Algorithm 

(PAGA) 

 

It is mentioned that EAs are also perfect optimization tools for the multi-

objective optimization problems. EAs belongs to the evolutionary-based field 

in the area of artificial intelligent (Yang [23]). In fact, the fundamentals of EAS 

are completely constituted on the Darwian’s evolutionary theory. The 

evolutionary theory contains the basic biological issues: breeding suitable 

individuals of population, propagating the valuable genetic material, which are 

coded in chromosomes, into next generations, eliminating the unsuitable one 

and finally surviving the individuals with a higher fitness. The concept of fitness 

informs us about the adaptation degree of individuals to both nature and life 

under an environmental pressure. In this regard, EAs mimics the working 

mechanism of biological evolution by means of genetic operators. The quality 

of fitness is easily computed by using a fitness function and utilized in the 

management of genetic-based processes. Thus, the evolutionary based 

computation begins by initiating a population. Then, the genetic operators are 

employed to process the genetic material embedded in the initial population 

considering the fitness values which is computed by fitness function. The 

genetic material inherited from the initial population is also utilized to generate 

the new populations. The generation of populations is generally terminated 

when a pre-defined maximum generation number is completed. The 

evolutionary-based loop is resulted by a number of pareto solutions. In this 

regard, the closeness, diversity and spread degrees of its current pareto front 

with respect to a true pareto front are the most important criteria in order to 

evaluate the computing efficiency of MOAs. In fact, these quality measuring 

metrics are also utilized to develop or improve the new multi-objective 

evolutionary algorithms (MEAs) (Reed and et al. [24]; Metaxiotis & Liagkouras 

[25]; Richardson and et al. [26]). Some promising approaches  are developed 

as: i) aggregation of fitness values (Aggregation Method (Srinivas & Deb [13]; 

Hwang & Masud [27]), Weighted Metrics (Miettinen [28]), Goal Programming 

(Charnes & Cooper [29]) etc…) , ii) dominance of fitness values (NSGAII (Deb 

and et al. [30]), SPEA2 (Zitzler and et al. [31]) etc. (see further details about the 

other similar approaches in (Talaslioglu [32]), iii) quantitative-based 

assessment of fitness values (IBEA (Zitzler and et al. [33]), ESP (Huband and 

et al. [34]) etc.). Especially, non-dominated sorting genetic algorithm II 

(NSGAII) (Deb and et al. [30]) achieve to gain more attention from the scientific 

research audience (Talaslioglu [11, 35]). The hybridized variants of MOAs have 

been also developed. Particularly, two recently developed MOAs are e-

dominance based MOA (EVMOGA) (Martínez and et al. [36]) and hyper-

volume dominance-based MOA (SMSEMOA) (Beume and et al. [37-38]).  

One of MEAs, Genetic Algorithm (GA) achieves to take more attention 

from different engineering fields due to its simple but effective search 

mechanism (Yang [23]). However, one of the difficulties in the evolutionary-

based multi-objective optimization procedure is generally concerned with 

determining an optimal solution with higher quality in a way of simultaneously 

using the multi-objective functions. Although it is known that the valuable 

genetic material is embedded to the pareto solutions, how to propagate this 

genetic material to next generations is not known. At this point, the 

fundamentals of PAGA are constituted on the transmission of pareto solutions 

to the next populations through pareto-inseminated populations (see the pseudo 

code of PAGA in Fig. 1). PAGA is managed by four different sub-populations 

Spop1, Spop2, Spop3 and Spop4, which are obtained thereby dividing the entire 

population sub-populations by a division number div_num. In this regard, an 

evolutionary search proposed by PAGA begins to randomly generate these four 

sub-populations. Then, fitness values (f1, f2, etc.) and pareto solutions 

(pareto_OF_ALL) are correspondingly computed and determined, respectively. 

The limit values of objective functions stored in the pareto solutions 

max_pareto_OF1_ALL, max_pareto_OF2_ALL and etc. are determined and 

utilized to compute the size of sub-populations PS1, PS2, PS3, and PS4 along 

with div_num. Then, the sub-populations sizes are determined. The crossover 

and mutation operations, the parameter values of which are adjusted depending 

on sub-generations numbers (subGN1, subGN2), are utilized to operate the 

genetic material in the sub-populations Spop1, Spop2, Spop3 and Spop4. After 

the fitness values of sub-populations Spop1, Spop2, Spop3 and Spop4 are 

computed, the pareto solutions are determined. In the last stage, the bounds of 

individuals located in the each of sub-populations are checked according to the 

maxDV and minDV. This main loop is terminated once the maximum generation 

number is completed. The further details about working principle of PAGA are 

presented in Reference Talaslioglu [22]. 

 

3.  The Integration of PAGA with Design of Tubular Lattice Girder 

 

The design optimization of tubular lattice girder is carried out by both 

minimizing its entire weight, f1 (m, number of lattice girder members; w, unit 

weight per member length) and its joint displacements, f2 (n, number of nodes; 

i, number of freedom) and maximizing its member forces, f3 (see Eqn. (1-3)) 

considering design constraints obtained by use of member-related provisions. 

The proposed design constraints are converted into the two ratios for the 

member-related design constraints and joint displacements. While one of these 

ratios named UnityMem is obtained by dividing the current strength of dome 

member to the allowable nominal strength, the other ratio named UnityDisp is 

computed by dividing the maximum value of current joint displacement to the 

predefined value. In order to penalize the unfeasible designs, a penalizing 

function is accordingly utilized to compute a penalizing value. The penalizing 

value is added to the fitness value. It is noted that the same penalizing process 

with an alteration of design constraints is also proposed for the optimization of 

benchmark design examples. 

min( ( . ) )
1 1

1

= +
=

m
f wl Pen

k
k

 (4) 

min( ) ( 1,...,12 1,..., ).... . .
2 2
= + = =f d Pen i and j n
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In Eq. 5, penalizing process is managed by two parameters: current 

generation number CGN and maximum generation number MGN. The 

formulations of design constraints in Eq. 5 are given in References (Talaslioglu 

[11]).  

In order to improve the search capability of PAGA, a designer module is 

included to automatically create a lattice girder configuration (see a pseudo code 

for an automatically generation of lattice girder in Fig. 2). Thus, it is possible to 

generate various framing configurations using the design variables (size, 

topology and shape). The cross-sectional properties which represents the design 

variables (size) D1, D2, D3 and D4 are chosen from 37 available tubular cross-

sections (see Fig. 3). The limit values of these design variables ParUDV and 

ParLDV are taken as 37 and 1. The other design variable (topology) is managed 

by the division number ParDN in order to form the tubular lattice girder with 

small nesting parts. The limit values of this design variables ParDN are indicated 

by ParDNU and ParDNL. Furthermore, the other topology-related design variable 

ParCTop is also utilized to represent each nesting part of tubular lattice girder 

named “Cell”. The brace members manage the topology of cell. Therefore, the 

topologic configuration of each cell is represented by four different numbers: 1 

for no bracing, 2 for left-sided bracing (\), 3 for right-sided bracing (/) and 4 for 

double bracing (X). The last design variable (shape) is managed by the first and 

middle heights of tubular lattice girder H1 and H2 due to the symmetrically 

adjusted by the designer module and indicated by ParH1 and ParH2. The limit 

values of shape-related design variables are indicated by the parameters ParH1U, 

ParH1L, ParH2U and ParH2L. Thus, these design parameters are stored in a matrix 

named “Chrom” (“Chromosome”), which contains the design variables ParDN, 

ParCTop, ParH1, ParH2, D1, D2, D3, D4. However, the main difficulty is related 

to the determination of topologic configurations for each cell of tubular lattice 

girder since ParCTop, which varies depending on ParDN is a row matrix. In order 

to handle with this problem, a unique value for the size of ParCTop is assigned as 

the half of upper limit value of division number as ParDNU/2 due to generating 

the tubular lattice girder using its symmetrical semi-part. Although ParCTop is 

generated in a unique size, the required data is easily picked from ParCTop. The 

tubular lattice girder outcome from the designer module has also a responsibility 

in the preparation of input data for the ready computer program ANSYS. Thus, 

it is possible to compute both the structural responses for an external static load 

and check the strengths of tubular lattice girder members and accordingly 

objective functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Pseudo Code for Automatically Generation of Lattice Girder 

Fig. 1 Pseudo Code for Computing Steps of PAGA 
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4.  Discussion of Findings 

 

The proposed design approach integrated with the optimization tool, PAGA 

is utilized for the optimal design of tubular lattice girder. In this regard, this 

section is divided into two sub-sections in order to summary the results obtained 

by the application of PAGA into the proposed design examples. In the first part 

of this section, the efficiency of PAGA is evaluated with respect to three MOAs, 

NSGAII, EVMOGA and SMSEMOA. For this purpose, three benchmark 

design examples named I-beam, welded beam and spring designs and a 

benchmark mathematical function named ZDT3 are utilized for the evaluation 

of employed MOAs coded in MATLAB. In the second sub-section, the design 

of tubular lattice girders as the real-world design examples are also optimized 

by the employed MOAs due to being fallen the benchmark examples into a 

category of small scaled ones. Thus, it is possible to both re-examine the 

computing performance of PAGA and determine the governing design factors 

in the design of lattice girder. The successful algorithms are ranked in two levels 

and summarized in the separate Tables. 

In order to provide an equal competition among the employed MOAs, the 

most appropriate operator parameter value sets, which manages the search 

mechanism of employed MOAs, have to be determined. For this purpose, a 

number of trials with different combinations of operator parameter values are 

separately performed for each of the employed MOAs. Then, the relatively 

better values of operator parameters are determined. Also, the values of two 

important parameters, evolutionary number and population size are taken as 50 

and 50, respectively (see Tables 1 and 2).  

Moreover, the relationship among them is assessed considering a statistical 

hypotheses test named “Kruskall Wallis” in a way of measuring the significance 

degree at a certain level (P<0.05). Therefore, the execution number is taken as 

100 runs. 

 

 

Table 1. Parameter Names and Values of Governing Operators Utilized by Employed MOAs 

Employed MOAs and Their Genetic Operator Parameter Names  Genetic Operator Parameter Values 

NSGAII  

options. Generations 50 

options.PopulationSize 50 

options.MutationFcn= {@mutationuniform.} 0.2 

options.CrossoverFcn= {@crossoverheuristic.} 0.4 

options.SelectionFcn={@selectiontournament.} 2 

EVMOGA  

dd_ini                                   (crossover-related) 0.25 

dd_fin                                    (cossover-related) 1 

Pm                                      (mutation-related) 0.1 

Sigma_Pm_ini                             (mutation-related) 10 

Sigma_Pm_fin                             (mutation-related) 0.1 

Nind_GA                               (GA population size) 50 

Nind_P                                  (P population size) 50 

Nind_max_A                             (A population size) 50 

n_iterations                              (generation number) 50 

SMSEMOA  

defopts.nPop                          (size of the population) 50 

defopts.maxEval              (maximum number of evaluations)  

defopts.useOCD                (use OCD to detect convergence) True 

defopts.OCD_VarLimit                 (variance limit of OCD) 1e-9   

defopts.OCD_nPreGen   (number of prec. generations used in OCD) 1 

defopts.var_crossover_prob        (variable crossover probability) 0.9 

defopts.var_crossover_dist        (distribution index for crossover) 15 

defopts.var_mutation_prob         (variable mutation probability) 1/(Number of Design Variables) 

defopts.var_mutation_dist         (distribution index for mutation) 20 

defopts.var_swap_prob              (variable swap probability)  0.5 

defopts.DE_F                       (difference weight for DE) 0.2+rand(1) 

defopts.DE_CR         (crossover probability for differential evo) 0.9 

defopts.DE_CombinedCR                 (crossover of blocks ) True 

defopts.useDE      (perform differential evo instead of SBX&PM) True 

defopts.refPoint                             (refPoint for HV) 0 

PAGA  

PS  (population size) 50 

GN   (generation number) 50 

CombGen1    (gen. num. for first gen. operator comb. application) 20 

CombGen2   (gen. num. for second gen. operator comb. application) 30 

 

 

 

 

 

 

 

Length of Span 

H1 
H2 H1 

D3 D3 D4 D4 

D1 D1 D1 D1 

D2 D2 D2 D2 

D3 D3 

D1 D1 

D2 D2 

D4 D4 

Fig. 3 A Lattice Girder Form Generated by Proposed Designer Module 



Tugrul Talaslioglu  278 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Preliminary Results Obtained from Optimization of Benchmark Function 

and Design Examples with Design Variables of Continuous and Mixed Types 

 

The benchmark function named ZDT3 (Zitzler and et al. [33]) is firstly 

optimized (see the Matlab scripts in Reference Wagner and Kretzschmar [19-

20]). This benchmark function ZDT3, which has 30 continuous-type decision 

variables within a certain interval [0,1] is a mathematical function with a non-

contiguous form. Its true pareto front with the optimal solutions is depicted in 

Fig. 4. Then, three benchmark designs named I beam, welded beam and spring 

are optimized (see their mathematical expressions in References Yang and et al. 

[39], Deb and Srinivasan [40], He and Wu [41]). While the designs of I and 

welded beams are represented by use of continues type-decision variables, both 

discrete and continues type-decision variable is utilized to represent the design 

of spring (see Fig. 5). Their true pareto fronts along with the optimal solutions 

are depicted in Figures (6-8). A statistical summarization of quality indicators 

obtained in the end of 100 runs are tabulated for each of benchmark test 

examples in Tables (3-6). The computing performances of employed MOAs are 

summarized in Table 7. Considering Figures (6-8) and Tables (3-7), the 

preliminary results are listed as: 

• There does not exist any relation among the employed MOAs taking into 

account of the lower probability ratio (Prob>Chi-sq) as 2.42e-77 (see also the 

note as “3 groups have mean ranks significantly different from PAGA” in Fig. 

9). 

• The computing performance of PAGA is ranked in a second level according 

to the measuring metrics obtained for the mathematical function. The capacity, 

density, convergence-diversity and covering features of PAGA show 

relatively lower performance than the other employed MOAs (see the rank of 

MOAs according to the measuring metrics in Table 7 and the true pareto front 

in Fig. 4) 

• PAGA achieves to obtain more accurate approximation with a relatively 

better distribution for all design examples (see the rank of MOAs according 

to R2 in Table 7). 

• The pure convergence degree of PAGA is ranked in the first place for the 

design example 1 and 2 but the second place for design example 3 (see the 

rank of MOAs according to Epsilon in Table 7). It is seen that the true pareto 

front of design example 3 is obtained as a non-contiguous form in Fig. 8. 

• The density degree of pareto solutions obtained by PAGA is relatively higher 

for design example 1 and 2 but lower for design example 3 (see the rank of 

MOAs according to Average Distance in Table 7).  

• Although PAGA shows a superior performance in obtaining the highest 

number of pareto solutions, the covering degree of these pareto solutions 

becomes relatively lower with respect to the other ones obtained by the other 

employed MOAs (see the rank of MOAs according to the Number of Pareto 

solutions and Spread in Table 7).  

It is easily seen that the decrease in the pure convergence of pareto 

solutions is arisen from the fast-approximating feature of PAGA due to using 

the valuable genetic material exploited by the proposed evolutionary search for 

the exploration of promising candidate solutions. This feature of PAGA leads 

to an increase in the capacity performance while a decrease in the covering 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Design Details of The Tubular Lattice Girder For The Design Optimization Purpose 

Cases 

 Lattice Girder 1 Lattice Girder 2 Lattice Girder 3 Lattice Girder 4 

Material Properties and Geometrical Configuration Details 

Load Values 

Loading 1: 70 kipf 

Loading 2: 20 kipf 

Loading 3: 30 kipf 

Loading 1: 140 kipf 

Loading 2:  40 kipf 

Loading 3:  60 kipf 

Loading 1: 150 kipf 

Loading 2:  50 kipf 

Loading 3:  75 kipf 

Loading 1: 300 kipf 

Loading 2: 150 kipf 

Loading 3:  75 kipf 

Spanning Length 393.70 in. (10 m) 393.70 in. (10 m) 787.40 in. (20 m) 787.40 in. (20 m) 

Joint Displ. Limit 3.94 in (100 mm) 

Max. Yielding  36 ksi (248.211 N/mm2) 

Elast. Mod. Value 29732 ksi (205 kN/ mm2) 

Design Parameters (Size) 

ParND 4 4 4 4 

ParUDV 37 37 37 37 

ParLDV 1 1 1 1 

Design Parameters (Topology) 

ParUDN 14 20 40 50 

ParLDN 6 6 10 10 

Design Parameters (Shape) 

ParUH2 35.433 in (0.9 m) 47.244 in (1.2 m) 59.055 in (1.5 m) 78.740 in (2.0 m) 

ParLH2 23.622 in (0.6 m) 23.622 in (0.6 m) 31.496 in (0.8 m) 31.496 in (0.8 m) 

ParUH1 23.622 in (0.6 m) 23.622 in (0.6 m) 31.496 in (0.8 m) 31.496 in (0.8 m) 

ParLH1 3.937 in (0.1 m) 3.937 in (0.1 m) 7.874 in (0.2 m) 7.874 in (0.2 m) 
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Table 3. Statistical Values of Pareto Solutions and Elapsed Time (Benchmark Mathematical Function ZDT3) 
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Table 4. Statistical Values of Quality Measuring Indicators (Benchmark Design Example 1: I-beam Design) 
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Table 5. Statistical Values of Quality Measuring Indicators (Benchmark Design Example 2: Welded Beam Design) 
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Table 6. Statistical Values of Quality Measuring Indicators (Benchmark Design Example 3: Spring Design) 
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Table 7. A summary for Ranking The Employed MOAs Considering Benchmark Tests 

Qual. Ind. Rank 
Mathematical 

Function 
Design Ex. 1 Design Ex. 2 Design Ex. 3 

Epsilon 
Rank 1 SMSEMOA PAGA PAGA SMSEMOA 

Rank 2 PAGA NSGAII SMSEMOA PAGA 

R2 
Rank 1 SMSEMOA PAGA PAGA PAGA 

Rank 2 PAGA NSGAII NSGAII NSGAII 

Average 

Distance 

Rank 1 NSGAII PAGA PAGA NSGAII 

Rank 2 PAGA NSGAII SMSEMOA SMSEMOA 

Spread 
Rank 1 EVMOGA EVMOGA EVMOGA EVMOGA 

Rank 2 SMSEMOA NSGAII SMSEMOA NSGAII 

Number of 

Pareto Sol. 

Rank 1 NSGAII PAGA PAGA PAGA 

Rank 2 PAGA SMSEMOA SMSEMOA SMSEMOA 
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(a1) (a2) 

Fig. 6 True Pareto Front along with Random Solutions (a1) and Current Pareto Fronts Obtained by Use of Employed MOAs (a2) (Benchmark I-beam Design) 

(a1) (a2) 

Fig. 4 True Pareto Front (a1) and Current Pareto Fronts Obtained by Use of Employed MOAs (a2) (Benchmark Function ZDT3) 

Fig. 5 Benchmark Design Examples I-Beam (Yang et. al. [39]), Welded Beam (Deb & Srinivasan [40]) and Spring Design (He and et al. [41]) 

(a1) (a2) 

Fig. 7 True Pareto Front along with Random Solutions (a1) and Current Pareto Fronts Obtained by Use of Employed MOAs (a2) 

(Benchmark Welded Beam Design) 
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4.2. Evaluation of Optimal Results Obtained from Design Optimization of 

Tubular Lattice Girders 

 

This sub-section has two objectivities: i) evaluating the computing 

performance of PAGA considering the optimal design solutions of tubular 

lattice girders as a real-world design example, ii) determining the design factors 

which have the big responsibilities in the structural behavior of tubular lattice 

girders. Thus, it is also possible to examine the load-carrying capacity, 

serviceability and constructional cost of tubular lattice girders depending on its 

framing configurations and loading conditions. For this purpose, the designs of 

four tubular lattice girders with different spanning length and loading conditions 

are optimized (see Table 2). The extended formulations of design constraints in 

Eq. 5 are given in References (Talaslioglu [11 and 42]). The statistical data 

regarded to the proposed quality indicator values obtained by the employed 

MOAs are tabulated in Table (8-11). The true pareto fronts along with random 

solutions are displayed in Fig. 10. A summary of data tabulated in Table (8-11) 

is presented in Table 12. Thus, the preliminary results are summarized in the 

following part as: 

• PAGA shows a success in obtaining more accurate approximation with a 

relatively better distribution for the designs of four tubular lattice girders (see 

the rank of MOAs according to R2 in Table 12 and see the true pareto fronts in 

Fig. 10). 

• PAGA achieves to obtain the highest pure convergence degree in the 

designs of four tubular lattice girders (see the rank of MOAs according to 

Epsilon in Table 12). 

• The density degree of pareto solutions obtained by PAGA is relatively 

lower for the designs of four tubular lattice girders except for the design of 

tubular lattice girder 3 (see the rank of MOAs according to Average Distance in 

Table 12).  

• While PAGA shows a superior performance in obtaining the highest 

number of pareto solutions, the covering degree of these pareto solutions 

becomes relatively lower with respect to the other ones (see the rank of MOAs 

according to the Number of Pareto solutions and Spread in Table 12).  

• The extreme optimal designs are tabulated in Table 13 including their 

framing configurations. Considering the entire weight values (1345.229 lb, 

17565.640 lb) and maximum member forces (169.242 lb, 3829.295 lb) and joint 

displacements (1.267 in, 2.227 in) corresponding to tubular lattice girder 1 and 

4, it is obvious that an increase in the weight of tubular lattice girder 

correspondingly leads to an elevation in both its load-carrying capacity and joint 

displacement value (see Table 13). Although this claim seems to be an expected 

result, its invalidation is easily investigated by taking into account of the 

increased entire weight values from 3301.855 lb to 4360.518 lb a and the 

decreased member force values from 1881.772 lb to 514.984 lb obtained for 

tubular lattice girders 1 and 2. In fact, there is also a similar dilemma between 

entire weight and joint displacement. In other words, it is expected that an 

increase in the entire weight of tubular lattice girder causes to an increase in the 

joint displacement value. But, its invalidation is approved considering the 

increased entire weight value from 1345.229 lb to 2181.964 lb and the decreased 

joint displacement value from 1.267 in to 0.895 (see the tubular lattice girders 

1 and 2 in Table 13). The reason behind this dilemma is arisen from mainly the 

stability-related structural behavior. In other words, the inclusion of a slender 

member into current framing configuration of tubular lattice girder causes to 

inevitably a decrease in the joint displacements of tubular lattice girder although 

the entire weight of tubular lattice girder is increased. 

• The other important result is concerned with the use of diagonal members 

in the construction of tubular lattice girders. Considering the sketches regarded 

to the framing configurations of tubular lattice girder in Table 13, a double 

bracing of diagonal members leads to an elevation in the load-carrying capacity 

even if under the severe loading conditions and expanded spanning lengths. 

Particularly, if the double bracing is increased along with an elevation of the 

first and last heights of tubular lattice girder, its load-carrying capacity is 

exponentially increased. This claim is easily confirmed considering the sketches 

corresponding to the increased member forces as 885.094 lb, 1229.182 lb, 

1850.709 lb and 3829.295 lb for the tubular lattice girder 1,3 and 4 (see Table 

13). Nevertheless, it is noted that there is a possibility of including a slender 

member into the current framing configuration of tubular lattice girder. At this 

point, the designer module gains a big importance in order to prevent the 

inclusion of slender members through its ability of continually differentiating 

the framing configurations of lattice girder. Therefore, the designer module 

increases the flexibility of PAGA. Thus, PAGA utilizes these promising optimal 

designs in order to generate new framing configurations of tubular lattice girder. 

 

 

  

Fig. 9 Sketches Regarded to Statistical Analysing Results Outcome from MATLAB 

(a1) (a2) 

Fig. 8 True Pareto Front along with Random Solutions (a1) and Current Pareto Fronts Obtained by Use of Employed MOAs (a2) 

(Benchmark Spring Design 
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Fig. 10 True Pareto Front and Random Solutions (Tubular Lattice Girder 1 (a1,b1), Tubular Lattice Girder 2 (a2,b2), Tubular Lattice 

Girder 3 (a3,b3) and Tubular Lattice Girder 4 (a4,b4)) 

(a1) (b1) 

(a2) (b2) 

(a3) (b3) 

(a4) (b4) 
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Table 8. Statistical Values of Quality Measuring Indicators (Lattice Girder 1) 
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Table 9. Statistical Values of Quality Measuring Indicators (Lattice Girder 2) 
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Table 10. Statistical Values of Quality Measuring Indicators (Lattice Girder 3) 
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Table 11. Statistical Values of Quality Measuring Indicators (Lattice Girder 4) 
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Table 12. A summary for Ranking The Employed MOAs Considering Tubular Lattice Girder Designs 

Qual. Ind. Rank Lattice Girder 1 Lattice Girder 2 Lattice Girder 3 Lattice Girder 4 

Epsilon 
Rank 1 PAGA PAGA PAGA PAGA 

Rank 2 SMSEMOA SMSEMOA SMSEMOA NSGAII 

R2 
Rank 1 PAGA PAGA PAGA PAGA 

Rank 2 SMSEMOA SMSEMOA NSGAII SMSEMOA 

Average 

Distance 

Rank 1 SMSEMOA SMSEMOA PAGA SMSEMOA 

Rank 2 PAGA PAGA NSGAII PAGA 

Spread 
Rank 1 PAGA SMSEMOA PAGA NSGAII 

Rank 2 SMSEMOA NSGAII SMSEMOA SMSEMOA 

Number of 

Par. Sol. 

Rank 1 PAGA PAGA PAGA PAGA 

Rank 2 NSGAII SMSEMOA NSGAII SMSEMOA 
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Table 13. Design Variables (Size, Shape and Topology) Along with Objective Functions Obtained by Use of Proposed Tubular Lattice Girders  
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5.  Conclusions 

 

 This study proposes the design optimization of tubular lattice girders. For 

this purpose, the tubular lattice girders with different loading conditions and 

spanning lengths are utilized. As an optimization tool, a multi-objective 

optimization methodology named pareto archived genetic algorithm (PAGA) is 

employed to execute the optimization-related computing procedures. The 

exploring capacity of PAGA is improved utilizing a designer module for the 

automatically generation of tubular lattice girder. Furthermore, the computing 

performance of PAGA is also evaluated considering several MOAs named 

NSGAII, EVMOGA and SMSEMOA. The preliminary results are summarized 

as: 



Tugrul Talaslioglu  287 

 

• PAGA achieves to obtain relatively better convergence-diversity, pure 

convergence, density and capacity degrees of current pareto fronts for the small-

scaled benchmark applications. 

• PAGA has a capability of simultaneously handling the design variables with 

continuous, discrete and integer.  

• PAGA is employed to optimize the tubular lattice girder design problem as 

large-scaled real-world design problem. It is shown that its success is increased 

obtaining better convergence-diversity, pure convergence, capacity and 

covering degrees of current pareto fronts. These results imply that PAGA is a 

successful optimization tool with an ability of both exploring an increased 

pareto optimal solutions and accurately approximating to a pareto front with a 

relatively better distribution. 

• It is shown that the inclusion of designer module into the proposed optimal 

design approach increases the flexibility of PAGA, thereby preventing the 

stability problem.  

• A diagonal lattice girder with increased double braced members increases 

the load-carrying capacity. However, it has to be noted that a possibility of 

including a slender member into the current framing configuration of tubular 

lattice girder causes to a stability loss. In this regard, the proposed designer 

module has a big importance for the design of tubular lattice girder due to its 

ability of exploring the stable frame configurations. Thus, it is possible to use 

these frame configurations in order to generate a tubular lattice girder with 

higher stability. 

• It is emphasized that the multi-objective optimization procedure instead of 

the single-objective has to be utilized in order to obtain a tubular lattice girder 

with a higher load-carrying, serviceability capacities and a lower constructional 

cost at the same time. 

In further research, the new design constraints regarded to the welding strengths 

will be employed along with the current ones. Also, PAGA will be improved 

thereby enriching its exploiting feature. For this purpose, a self-adaptive 

mechanism is developed in conjunction with new implementations in its current 

recombination procedure. 
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