ITM Web of Conferences 22, 01065 (2018) https://doi.org/10.1051/itmconf/20182201065
CMES-2018

A New Method for (4+1) Dimensional Fokas
Equation

Seyma Tuluce Demiray"" and Hasan Bulut*
! Department of Mathematics, Osmaniye Korkut Ata University, Osmaniye, Turkey

2 Department of Mathematics, Firat University, Elazig, Turkey

Abstract. In this paper, modified exp (—Q(i)) -expansion function method (MEFM) has

been tackled for procuring exact solutions of (4+1) dimensional Fokas equation. Hyperbolic function
solutions and dark soliton solutions of (4+1) dimensional Fokas equation have been found by means
of this method. Moreover, by the help of Mathematica 9, some graphical simulations were given to
clarify the behavior of these solutions.

1 Introduction

Nonlinear evolution equations (NLEEs) are considerably used to identify a variety of
physical circumstances in the areas such as quantum field theory, hydrodynamics, chemical
kinematics, geochemistry, electricity, elastic media and plasma physics.

Recently, most of researchers have submitted to acquire exact solutions of NLEEs many
methods such as G'/G-expansion method [1], modified extended tanh-function method [2],
sine-cosine method [3], exp-function method [4], modified simple equation method [4],
extended trial equation method [5], generalized Kudryashov method [6] . In this study,
MEFM [7] will be implemented to seek exact solutions of (4+1) dimensional Fokas
equation.

We consider (4+1) dimensional Fokas equation [8-14],

u, —u, +u,,, +12uu +12uu  —6u,, =0. (1)

This equation has been obtained by Fokas by expanding the Lax pairs of the integrable
Kadomtsev—Petviashvili (KP) and Davey—Stewartson (DS) equations to some higher-
dimensional nonlinear wave equations [8]. The importance of Eq. (1) suggests that the idea
of complexifying time can be considered in the context of modern field theories via the
existence of integrable nonlinear equations in four spatial dimensions involving complex
time [8].
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Our target in this work is to gain exact solutions of (4+1) dimensional Fokas equation.
In Sec. 2, we clarify general structure of MEFM. In Sec. 3, we get exact solutions of this
equation by means of MEFM.

2 General Structure of Method
Step 1. We handle PDE as follows:

P(u,ux,uy,uz,uw,ut,um,uw,uzz,uww,u”,---) =0, ()
where u =u(x, y,z,w,t) is an unknown function, P is a polynomial in (x, y,z,w,t)and

its derivatives, in which the highest order derivatives and nonlinear terms are included and
the subscripts demonstrate the partial derivatives. Then, we get traveling transformation

u(x,y,z,w,t)zU(f), E=ax+Py+yz+ow+st. 3)

Using Eq. (3), we can turn Eq. (2) into a nonlinear ordinary differential equation
(NODE) described by:

NODE(U,U’,U",U”',---)=0, 4

where NODE is a polynomial of U and its derivatives and the superscripts demonstrate the
ordinary derivatives according to &.
Step 2. Assume the traveling wave solution of Eq. (4) can be shown as follows:

£)= é,{_[exp(—ﬁ(&))}l A+ Aexp(-Q)+-+ 4, exp(N(-Q))

T , (5)
gij [exp(—Q(g))T B+ B exp(-Q)+--+B, exp(M(—Q))

where 4, B, ,(0<i<N,0<j<M)are constants to be described later, such
that A, #0,B,, #0, and Q :Q(E)) is solution of the following ordinary differential

equation:

Q’(é’;):exp(—Q(cZ))+yexp(Q(<“;))+l, 6)
There are the following solution families of Eq. (6):
Familyl: When gt #0, > —4u>0,

Q(f)zln[_“iz_‘w tanh[ 4/122_4;, (§+E)] A ] (7)

2u 2u
Family2: When g1 #0, 1> —4u <0,

Q(g):ln[\/_/12+4# tan[\/—l;+4y (§+E)]_i} ®)

2u 2u
Family3: When =0, A#0,and A> =4 >0,
A
Q(&)=-1 . )
(<) n(exp(/l(erE))—lJ
Family4: When 1 #0, A #0,and A> —4u=0,

Q(g):m[_%} (10)

Family5: When =0, A=0,and A> =41 =0,
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Q(&)=(E+E). (11)

such that 4, 4, 4,,---A,,B,,B,,B,,--*B,,, E, A, _are constants to be described later. The

positive integers N and M can be identified by taking into consideration the homogeneous
balance between the highest order derivatives and the nonlinear terms arising in Eq. (5).
Step 3: Embedding Egs. (6) and (7-11) into Eq. (5), we attain a polynomial of
exp(-Q(&)). We compensate all the coefficients of same power of exp(-Q(&))to zero.
This process provides a system of equations which can be solved to obtain
A4,,A4,4,,---Ay,B,,B,B,,--B,,,E, A, ;t by using Wolfram Mathematica 9. Putting the
values of 4, 4,,4,,--- Ay, B,,B,,B,,-*B,,, E, A, ;¢ into Eq. (5), the general solutions of Eq. (5)
fulfil the determination of the solution of Eq. (1).

3 MEFM for (4+1) Dimensional Fokas Equation

In order to solve Eq. (1), we use the travelling wave transform

u(x,y,z,mt)=U(&), E=ax+PBy+yz+ow+et. (12)
where , ,B Vs O and & are arbitrary constants. Then, we reduce Eq. (1) to following
equation

(aff’ — o’ B)u" +(4ae - 6y8)u +6apu’ = 0. (13)
Using balance principle in Eq. (13), we obtain
N=M+2. (14)
If we take M =1 so N =3, we can acquire
U A+ A exp(—Q)+ 4, exp(Z(—Q))+ A, exp(3(—Q)) (15)

5

B, + B, exp(-Q)
. [ 4,exp(-Q)(-Q') + 4, exp(2(-Q)) (-29) + 4, exp(3(-Q)) (-3C) |[ B, + B, exp () |
[BO +B, exp(—Q)]2
[Aﬂ + 4, exp(-Q)+ 4, exp(2(-Q)) + 4 e:)(p(fi(fQ))J[B1 exp(-Q)(-Q) ] _
[BO + B, exp(—Q)]2

Y'Y -YY'
——

(16)

b

€~

U" ,
where 4, # 0and B, = 0. Substituting Eqgs. (15) and (16) in Eq. (13), we attain a system of
algebraic equations from the coefficients of polynomial of exp(—Q(§ )) By solving this

system of algebraic equations by using Wolfram Mathematica 9, it yields us the following
coefficients:
Case 1.

HAB AB B
Ay =04 =A3(,u+70 oAy = Ay| A+ | A = Ay, By = By, B =B,

1 1 1

17)
675B3/2
P22 —ap)a, - OB
J4, + BB J4, + BB
a=-2 p Le= s +h L A=A u=p.

\/E 4B,
Embedding Eq. (17) together with Eqs. (3) and (7) in Eq. (15), we find new hyperbolic
function solutions for Eq. (1) as follows:
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(=A% +4p) 4, (18)

B, (ﬂcosh[f(x,y,z,w,t)}+«Mz —4u sinh[f(x,y,z,w,t)])2 ’

u, (x,y,z,w,t) =

where
tB(2* —4u) 4, 2xd + B, (2x +3ty5)

B 25 ({175

f(er’»Z,WJ)Z%xM-Z _4,U E+yﬂ+Z}/+W5+

and g #0,1> —4u>0.

Case 2.

Substituting Eq. (19) together with Egs. (3) and (7) in Eq. (15), we obtain new dark soliton
solutions for Eq. (1) as follows:

(ﬁz —4,u)A3 (2.2 —6u+2AJA* —4u tanh‘:g(x,y,z, w,t):| -%—(2.2 + 2,u)tanh2 [g(x,y,z, w,t)])

6B, (/1 + «//12 —4u tanhl:g(x,y,z,w,z‘)])2

u, (x,y,z,w,t) =

(20)
where

tB(A* —4u) 4, 2xA, + B, (2xp" +3ty5)

4B, 2B (V4 + 5B,

g(xay’Z7Wat):%’\l/lz _4/J E+yﬂ+Zy+W5—

and g #0,A° —4u>0.
Case 3.
_ AzBo _(az _ﬁz)(Bg _/uBlz)

’A3 :(az _182)319

A4 -8, -5)) | @
CEara

6y

a=2 T D 22 A Bu AR+
[04

1
4

A4, =4,,B,=B,,B, =B, A=A, u=p.
Putting Eq. (21) together with Egs. (3) and (7) in Eq. (15), we find new hyperbolic function
solutions for Eq. (1) as follows:

( ) (a2 —,BZ)/J((AZ —(az —ﬂz)Bo )2 —4(0{2 -p )2 /IBIZ) sech’ [h(x,y,z,w,t)] (22)
uy (x,y,z,w,t) =— =
(4,-(a*-5)B,)
4 —(a* =) B, - B, |4u+ w7 )2 e tanh[ h(x,y,z,w,t)]
where
h(x,y,z,w,t)—;\/—4y+w[E+xa+yﬂ+zy+w5+it{?—4a2ﬂy+4ﬁx/j+WH,

and p#0,4> —4u>0.

Remark. The exact solutions of Eq. (1) were obtained via MEFM and were controlled by
use of Mathematica Release 9. As far as we know, the solutions of Eq. (1) that we found in
this study, are new and are not indicated before.
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Fig.1. The 3D and 2D surfaces of Eq. (18) for
A=03, u=—058=1,y=2,5=3,4,=2,B =1

E=05,y=03,z=02,w=0.1, -15<x<15 —15<¢<15 and -25<x<25¢=0.01 for 2D surface.

u(x,y,z,w,t u(x,y,z,w,t)
0.03

10

Fig.2. The 3D and 2D surfaces of Eq. (22) for
u=-04,a=2,p=1,y=3,6=2,4,=04,B,=0.03, B, =0.01

E=025,y=03,z=02,w=0.1, -5<x<5, -30<r<30 and -10<x<10,r=0.03 for 2D surface.

4 Conclusion

In this paper, we apply MEFM to obtain exact solutions of (4+1) dimensional Fokas
equation. Then, for proper parameters, we draw 2D and 3D surfaces of some exact
solutions of this equation by using Mathematica Release 9. This method yields us to make
complicated and tedious algebraic calculations. According to these informations, this
method has been influential for the analytical solutions of (4+1) dimensional Fokas
equation. Also, MEFM is a strong mathematical device in the way of finding new exact
solutions. The graphical demonstrations clearly show validness of proposed method.
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