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Abstract. In this paper, modified exp   Ω ξ -expansion function method (MEFM) has 

been tackled for procuring exact solutions of (4+1) dimensional Fokas equation. Hyperbolic function 
solutions and dark soliton solutions of (4+1) dimensional Fokas equation have been found by means 
of this method. Moreover, by the help of Mathematica 9, some graphical simulations were given to 
clarify the behavior of these solutions. 

 

1 Introduction  

     Nonlinear evolution equations (NLEEs) are considerably used to identify a variety of 
physical circumstances in the areas such as quantum field theory, hydrodynamics, chemical 
kinematics, geochemistry, electricity, elastic media and plasma physics.  

     Recently, most of researchers have submitted to acquire exact solutions of NLEEs many 
methods such as G'/G-expansion method [1], modified extended tanh-function method [2], 
sine-cosine method [3], exp-function method [4], modified simple equation method [4],  
extended trial equation method [5], generalized Kudryashov method [6] . In this study, 
MEFM [7] will be implemented to seek exact solutions of (4+1) dimensional Fokas 
equation.  
     We consider (4+1) dimensional Fokas equation [8-14], 

                   
4 12 12 6 0.tx xxxy xyyy x y xy zwu u u u u uu u     

                
(1) 

This equation has been obtained by Fokas by expanding the Lax pairs of the integrable 
Kadomtsev–Petviashvili (KP) and Davey–Stewartson (DS) equations to some higher-
dimensional nonlinear wave equations [8]. The importance of Eq. (1) suggests that the idea 
of complexifying time can be considered in the context of modern field theories via the 
existence of integrable nonlinear equations in four spatial dimensions involving complex 
time [8]. 
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     Our target in this work is to gain exact solutions of (4+1) dimensional Fokas equation. 
In Sec. 2, we clarify general structure of MEFM. In Sec. 3, we get exact solutions of this 
equation by means of MEFM.  
 
2 General Structure of Method 
Step 1. We handle PDE as follows: 
                          , , , , , , , , , , , 0,x y z w t xx yy zz ww ttP u u u u u u u u u u u             

             
(2)          

where  , , , ,u u x y z w t  is an unknown function, P  is a polynomial in  , , , ,u x y z w t and 
its derivatives, in which the highest order derivatives and nonlinear terms are included and 
the subscripts demonstrate the partial derivatives. Then, we get traveling transformation 
                               , , , , , .u x y z w t U x y z w t                       

             
(3)          

Using Eq. (3), we can turn Eq. (2) into a nonlinear ordinary differential equation 
(NODE) described by: 

                                      , , , , 0,NODE U U U U                                      
             

(4)          
where NODE  is a polynomial of U and its derivatives and the superscripts demonstrate the 
ordinary derivatives according to  . 
Step 2. Assume the traveling wave solution of Eq. (4) can be shown as follows: 
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(5)          

where  , , 0 ,0i jA B i N j M    are constants to be described later, such 

that 0, 0,N MA B  and  Ω Ω ξ  is solution of the following ordinary differential 
equation: 
                                                exp expξ ξ ξ .                 

                     
(6)          

There are the following solution families of Eq. (6): 
Family1: When 20, 4 0,      
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Family5: When 0, 0,   and 2 4 0,    
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such that 0 1 2 0 1 2, , , , , , , , , ,N MA A A A B B B B E     are constants to be described later. The 
positive integers N and M  can be identified by taking into consideration the homogeneous 
balance between the highest order derivatives and the nonlinear terms arising in Eq. (5). 
Step 3: Embedding Eqs. (6) and (7–11) into Eq. (5), we attain a polynomial of 

  .exp   We compensate all the coefficients of same power of   exp  to zero. 
This process provides a system of equations which can be solved to obtain 

0 1 2 0 1 2, , , , , , , , , ,N MA A A A B B B B E     by using Wolfram Mathematica 9. Putting the 
values of 0 1 2 0 1 2, , , , , , , , , ,N MA A A A B B B B E     into Eq. (5), the general solutions of Eq. (5) 
fulfil the determination of the solution of Eq. (1). 
 
3 MEFM for (4+1) Dimensional Fokas Equation 
In order to solve Eq. (1), we use the travelling wave transform 

                       
   , , , , , .u x y z w t U x y z w t                                       (12) 

where , , ,     and   are arbitrary constants.  Then, we reduce Eq. (1) to following 
equation 

                                   
   3 3 24 6 6 0.u u u         

                        
(13) 

Using balance principle in Eq. (13), we obtain 

                                                                         
2 .N M 

                                                
(14) 

If we take 1M   so 3N  , we can acquire 
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(16) 

where 3 0A  and 1 0B  . Substituting Eqs. (15) and (16) in Eq. (13), we attain a system of 

algebraic equations from the coefficients of polynomial of   exp .  By solving this 
system of algebraic equations by using Wolfram Mathematica 9, it yields us the following 
coefficients: 

Case 1. 
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(17) 

Embedding Eq. (17) together with Eqs. (3) and (7) in Eq. (15), we find new hyperbolic   
function solutions for Eq. (1) as follows: 
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where
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 and 20, 4 0.          
Case 2. 
Substituting Eq. (19) together with Eqs. (3) and (7) in Eq. (15), we obtain new dark soliton 
solutions for Eq. (1) as follows: 
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Case 3. 
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(21) 

Putting Eq. (21) together with Eqs. (3) and (7) in Eq. (15), we find new hyperbolic function 
solutions for Eq. (1) as follows: 
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 and 20, 4 0.       
  
Remark. The exact solutions of Eq. (1) were obtained via MEFM and were controlled by 
use of Mathematica Release 9. As far as we know, the solutions of Eq. (1) that we found in 
this study, are new and are not indicated before. 
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Fig.1. The 3D and 2D surfaces of Eq. (18) for 

3 10.3, 0.5, 1, 2, 3, 2, 1A B              
0.5, 0.3, 0.2, 0.1, 15 15, 15 15E y z w x t           and 25 25, 0.01x t     for 2D surface.   
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Fig.2. The 3D and 2D surfaces of Eq. (22) for 

2 0 10.4, 2, 1, 3, 2, 0.4, 0.03, 0.01A B B               
0.25, 0.3, 0.2, 0.1, 5 5, 30 30E y z w x t           and 10 10, 0.03x t     for 2D surface. 

4 Conclusion 
     In this paper, we apply MEFM to obtain exact solutions of (4+1) dimensional Fokas 
equation. Then, for proper parameters, we draw 2D and 3D surfaces of some exact 
solutions of this equation by using Mathematica Release 9. This method yields us to make 
complicated and tedious algebraic calculations. According to these informations, this 
method has been influential for the analytical solutions of (4+1) dimensional Fokas 
equation. Also, MEFM is a strong mathematical device in the way of finding new exact 
solutions. The graphical demonstrations clearly show validness of proposed method. 
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