Calculation of (n,α) reaction cross sections by using some Skyrme force parameters for Potassium (⁴¹K) target nuclei

Eyyup Tel¹, Muhittin Sahan¹, Hasancan Alkanli¹, Halide Sahan¹, Mustafa Yigit²

¹Osmaniye Korkut Ata University, Department of Physics, Osmaniye, Turkey ²Aksaray University, Department of Physics, Aksaray, Turkey

Abstract. In this study, the (n,α) nuclear reaction cross section was calculated for ⁴¹K target nuclei for neutron and proton density parameters using SKa, SKb, SLy5, and SLy6 Skyrme force. Theoretical cross section for the (n,α) nuclear reaction was obtained using a formula constituted by Tel et al. (2008). Results are compared with experimental data from EXFOR. The calculated results from formula was found in a close agreement with experimental data.

1 Introduction

Potassium (with a symbol K, Z=19) presents in some fruits and vegetables such as peach and melons etc. [1-3]. In recent years, Potassium has been used in different area like medicine and agriculture etc. [1-5]. Nowadays, nuclear reactions have been using different cross section formula similar to Tel et al. formula [6]. The Hartree-Fock-Skyrme-Method is used for studying the properties and structure of nuclei [7-12]. In addition, many properties of nuclei are calculated using this method such as proton (ρ_n) and neutron (ρ_n) densities. In this calculation, we investigated the proton $(\rho_{\rm p})$ and neutron (ρ_n) densities for ⁴¹K target nuclei using the Skyrme-Hartree-Fock [8, 10, 11] calculation method with the SKa, SKb, SLy5, and SLy6 force parameters [7, 13, 14]. From these calculations, the new proton and neutron densities were obtained. The theoretical results calculated for proton (ρ_n) and neutron (ρ_n) densities were used in the formula given by reference [6] for the (n,α) nuclear reaction cross section at incident neutron energy of 14-15 MeV [6].

2 Results and Discussion

In this study, we calculated the (n,α) theoretical nuclear reaction cross section for ⁴¹K target nuclei. We used SKa, SKb, SLy5, and SLy6, Skyrme force parameters for calculations [7, 13, 14]. SKa, SKb, SLy5, and SLy6, Skyrme force parameters were given in Table 1 and Fig. 1-4. These parameters were then used in the Skyrme-Hartree-Fock Program (HAFOMN) [11, 15]. Cross section calculations were obtained for target nucleus with radius of 1.8 fm and then were compared with the semi-empirical results constituted by Tel et al. formula [6]. For the mass numbers between 37 and 239, this formula is given as follows [6];

$$\sigma_{(n,\alpha)} = 16.15(A^{1/3} + 1)^2 e^{-33.01s}$$
(1)

where A is mass number of atom, s is asymmetry parameter (S=(N-Z)/A).

Table 1. SKa, SKb, SLy5, and SLy6 Skyrme Force Parameters [7, 13, 14].

	SKa	SKb	SLy5	SLy6
t ₀	-1602.78	-1602.78	-2484.88	-2479.50
t_1	570.88	570.88	483.13	462.18
t_2	-67.70	-67.70	-549.40	-448.61
<i>t</i> ₃	8000	8000	13763	13673
t_4	125	125	126	122.00
x_{θ}	-0.02	-0.02	0.778	0.825
x_1	0	-0.165	-0.328	-0.465
x_2	0	0	-1.00	-1
$\begin{array}{c} x_3 \\ \alpha \end{array}$	-0.286 1/3	-0.286 1/3	1.267 1/6	1.355 1/6

In earlier works, neutron and proton data for asymmetry parameter (S=(N-Z)/A) were used. But, for this study, we used in the formula developed by Tel et al. [6] proton and neutron density data for asymmetry parameter (S=(ρ_n - ρ_p)/(ρ_n + ρ_p)) [6,7,9]. Theoretical cross section values obtained with the cross section values ${}^{41}K(n,\alpha){}^{38}Cl$ results that are obtained using SKa, SKb, Sly5, and SLy6 parameters are given in Table 2 [7,13-14]. The neutron-number (N = 22) and neutron densities (ρ_n) are higher than proton-number (Z=19) and proton densities (ρ_n) because of Z=19 and N=22 for ⁴¹K. The obtained value of the proton density ($\rho_{\rm p}$) for ⁴¹K target nuclei at the r = 1.8 fm have approximately been from 0.075 (for SKa and SLy5), 0.074 (for SKb), 0.079 (for SLy6) [7, 13, 14]. Moreover, value of the neutron density (ρ_n) for ⁴¹K target nuclei at the r = 1.8 fm have

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

approximately been from 0.081 (for SKa and SKb), 0.082 (for Sly5), 0.087 (for SLy6) and also obtained value of the asymmetry parameter for ⁴¹K target nuclei at the 0.040 (for Ska), 0.043 (for SKb and SLy5), 0.044 (for Sly6) [7, 13, 14]. (see Figs. 1-4 and Table 2). Many experimental data were found from 1953 to 2017 for Potassium (for ${}^{41}K(n,\alpha){}^{38}Cl$) [16]. Some experimental cross sections data were given in this study. For example; Garuska et al. found the cross section to be 30 \pm 3 mb at 14.6 MeV neutron induced reactions [16, 17]. Filatenkov et al. found the cross section as to be 34.7 mb \pm 1.6 mb at 14.1 \pm 0.1 MeV neutron induced reactions [16-18]. Ercan et al. determined the experimental cross section as to be 36 ± 3 mb at 14.6 ± 0.1 MeV neutron induced reactions [16, 19]. Ikeda et al. found the cross sections to be 37.6 ± 2.8 mb at 13.97 MeV neutron induced reactions [16, 20]. Anders et al. found the cross section as to be 33 ± 1.3 mb at 14.7 ± 0.3 MeV neutron induced reactions [16, 21]. Bormann et al. found the cross section to be 12 ± 5 mb at 14.1 ± 0.05 MeV neutron induced reactions [16, 22]. Janczyszyn et al. found the cross section as to be 11 ± 2 mb at 14.0 MeV neutron induced reactions [16, 23].

Table 2 Theoretical cross section results for $^{41}K(n,\alpha)$ nuclear reactions for r=1.8 fm

Proton	Neutron	Asymmetry	σ_{Theo}
densities	densities	parameter	(mb)
0.075	0.081	0.040	10.08
0.074	0.081	0.043	9.086
0.075	0.082	0.043	9.142
0.079	0.087	0.044	9.046
	Proton densities 0.075 0.074 0.075 0.079	Proton Neutron densities densities 0.075 0.081 0.074 0.081 0.075 0.082 0.079 0.087	Proton Neutron Asymmetry densities densities parameter 0.075 0.081 0.040 0.074 0.081 0.043 0.075 0.082 0.043 0.079 0.087 0.044

We compared our data of target ⁴¹K with literature data from EXFOR around 14-15 MeV [16, 18]. In this study, the obtained neutron and proton density results were depicted in Figs. 1-4. For neutron incident energy at 14.00 MeV, the experimental data is 11 ± 2 mb [23] and theoretically calculations are about 10.08 mb for SKa, 9.086 mb for SKb, 9.142 mb for SLy5, and 9.046 mb for SLy6 at r = 1.8 fm. These parameters were then used in the Skyrme-Hartree-Fock-program (HAFOMN) [7, 13-15]. Empirical results are found in compatible with theoretical data obtained in reference [6].

3 Conclusion

Many researchers have studied experimental and theoretical cross sections in recent years. In this study, (n,α) nuclear theoretical cross section reactions have been investigated for ⁴¹K target nuclei incident neutron energy of 14-15 MeV. The attained data have also been contrasted on the existing some experimental values in EXFOR [16]. The attained theoretical and experimental results can be explained as follows;

In order to be calculate (n,α) reaction cross section, we used the formula developed by Tel et al. formula [6]. In Equation 1 developed by Tel et al. [6] can be used to calculate cross section with SKa, SKb, SLy5 and SLy6 Skyrme-force-parameters for ⁴¹K target nuclei [7, 13-14]. The obtained results were compared with experimental result for 1.8 fm radius (see Figs. 1-4). In order to be calculate (n, α) different radius reaction cross section for ⁴¹K target nuclei, we used Tel et al formula [6] and the we obtained theoretical cross section agreement with experimental results (see Figs. 1-4).

Fig. 1 ${}^{41}K(n,\alpha){}^{38}Cl$ SLy6 proton and neutron density values.

Fig. 2. 41 K(n, α) 38 Cl SLy5 proton and neutron density values

Fig. 3. 41 K (n, α)³⁸Cl SKb proton and neutron density values

Fig. 4. 41 K(n, α) 38 Cl SKa proton and neutron density values

Acknowledgment

The study was supported by Osmaniye Korkut Ata University (OKU) Science Research Projects Coordination Unit with the grant number: OKÜBAP-2015-PT3-012.

References

- 1. J. S. Jones, J. Urol., **171 (1)**, 353 (2004)
- 2. S. Lamid, G. Klingbeil, Am. J. Clin. Nutr. 31(12), 2135 (1978)
- S.K. Corbacioglu, S. Guler, D. Yagmur, V. Ulker, I. Kilicaslan, Turkish Journal of Emergency Medicine, 12(1), 41 (2012).
- I. Sönmez, M. Kaplan, S. Sönmez, Journal of Batı Akdeniz Agricultural Research Inst., 25(2), 24 (2008)
- 5. F. J. Gennari, New England Journal of Medicine, 339(7), 451(1998)
- E. Tel, Ş. Okuducu, M.H. Bölükdemir, G. Tanır, International Journal of Modern Physics E 17 (3), 567 (2008)
- 7. Kohler H.S., Nucl. Phys. A, 258 (2) 301(1976)
- 8. Skyrme T.H.R., Nuclear Physics 9(4), 615 (1958-1959)
- H. Sahan, E. Tel, M. Sahan, A. Aydın, I.H. Sarpün, A. Kara, M. Döner, Epj Web of Conferences 100, 01007 (2015)
- 10. H.M.M. Mansour, Acta Physica Polonica, B 21, 9 (1990)
- E.G. Nadjakov, K.P. Marinova, Y.P. Gangrsky, Atomic Data and Nuclear Data Tables, 56 (1) 133 (1994).
- 12. L.G. Qiang, J. Phys. G 17, 1 (1991).
- E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 627 (4) 710 (1997)
- 14. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635 (1-2) 231(1998)
- 15. http://phys.lsu.edu/graceland/faculty/cjohnson/skhafo.f
- 16. EXFOR, https://www-nds.iaea.org/exfor/exfor.htm
- U. Garuska, J. Dresler, H. Malecki, Inst. Badan Jadr. (Nucl. Res.), Swierk+Warsaw, Repts No. 1871/I/PL/A, 15 (1980)
- A.A. Filatenkov, S.V. Chuvaev, V.A. Yakovlev, A.V. Malyshenkov, S. K. Vasil'ev, Khlopin Radiev. Inst., Leningrad Reports No.252 (1999)
- A. Ercan, M.N. Erduran, M. Subasi, E. Gueltekin, G. Tarcan, A. Baykal, M. Bostan, Conf. on Nucl. Data for Sci. and Technol., 376 (1991)
- Y. Ikeda, C. Konno, K. Oishi, T. Nakamura, H. Miyade, K. Kawade, H. Yamamoto, T. Katoh, JAERI Reports No.1312 (1988)
- B. Anders, B.M. Bahal, R. Pepelnik, Ges. Kernen.-Verwertung, Schiffbau and Schiffahrt 85 24 (1985)
- M. Bormann, H. Jeremie, G. Andersson-Lindstroem, H. Neuert, H. Pollehn, Zeitschrift fuer Naturforschung Section A 15 200 (1960)
- 23. J. Janczyszyn, L. Gorski, Journal of Radio Analytical Chemistry 14 201 (1973)