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The criticality problem for one-speed neutrons in a slab is investigated using Chebyshev poly-
nomials of first kind in the series expansion of the neutron angular flux in stationary neutron
transport equation. The medium is assumed to let the neutrons to scatter anisotropically and
to be surrounded by a reflector. The critical thicknesses for the neutrons in a uniform finite
slab are computed for selected values of the reflection coefficient and the anisotropy parame-
ter and they are given in the tables. The numerical results obtained from the present method
are in good accordance with the results already existed in literature.
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INTRODUCTION

It is important to develop a method to solve the
neutron transport equation which describes the behav-
ior and the conservation of the neutrons. These de-
scriptions are very important to operate a nuclear sys-
tem safely. Spherical harmonics or commonly known
as the Py method is one of the most effective and pre-
ferred methods established for the solution of the
transport equation. In this method, the neutron angular
flux is expanded in terms of the Legendre polynomi-
als. However, it is not the unique and valid one for the
solutions of the problems in neutron transport theory.
Furthermore, insufficiencies of the Py method are re-
ported in some problems like Milne problem and
anisotropic scattering cases [1, 2]. Therefore, in some
earlier studies, other than the Legendre polynomials,
the neutron angular flux was expanded in terms of the
Chebyshev polynomials of the first kind (7 method)
for the criticality and the extrapolated end point calcu-
lations in neutron transport theory [1-3]. In some re-
cent studies, 7, method has been successfully applied
to transport equation for the critical thickness of the
bare and reflected slabs [4, 5]. In addition, in order to
develop new techniques with parameters that are
better representing the real system for the solution of
the transport equation, the 7y method is revised and
applied to criticality problem in transport theory suc-
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cessfully [6-8]. In those studies, numerical results ob-
tained by the revised Ty method for the critical size of
the system, were given with the results that existed in
literature. Since a good accordance between them is
observed, it can be worthwhile to use this revised
method for the solution of the transport equation. It is
thought that this method can be applied to other prob-
lems in science and engineering by the researchers in-
terested in this subject [7, 9].

Since the neutrons migrate anisotropically in
real reactor systems, an extended knowledge about the
scattering of them through the media should be taken
into consideration to attain the solution of the transport
equation properly. In other words, anisotropic scatter-
ing is an important phenomenon in the solution algo-
rithm of the transport equation. Moreover, reflectors
used to reflect the neutrons which are preferably made
from fertile or heavy materials, tend to escape from the
system back through the core of the reactors. By this
way, the neutron population of the system can be con-
served to continue the fission chain reaction. There-
fore in this study, a modified version of the 7 method
is used for the solution of the criticality problem in
one-speed and one-dimensional neutron transport the-
ory, using reflective boundary condition together with
the Marshak boundary condition [4, 7, 8].

In this method, first, the neutron angular flux is
expanded in terms of the Chebyshev polynomials of
firstkind, as previously used in the studies [6-8]. Then,
the flux moment equations are obtained by the proce-
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dure of the method to calculate the eigenvalues. The
critical thicknesses of the slab for one-speed neutrons
are computed for selected values of the mean number
of secondary neutrons per collision ¢, and the reflec-
tion coefficient R.

The numerical results for the critical thickness of
the slab are given in the tables together with the results
obtained by the conventional Py method, and the ones
obtained by Atalay using Case's singular eigenfunctions
method [10]. It can easily be seen from the derivations of
the equations and the results in the tables that this method
has practical executable equations with its rapid conver-
gence. Therefore, the present method can be thought as
an alternative method for the solution of the problems
which are solved inefficiently by the conventional Py
method in the transport theory.

THEORY AND EQUATIONS

The stationary transport equation for one-speed
neutrons travelling in direction (2’ before and (2 after a
scattering collision and no external neutron sources
can be written as,

QVy(r,2)+ory(r,Q2)=
= cop [W(r Q) f(2'2)dY )
where w(r,(2) is the angular flux of the neutrons at po-
sition r, f(£20Q") — the scattering function which de-
scribes the interaction of the neutrons with fuel and
other material atoms inside the system, and ot — the to-
tal macroscopic cross-section [11].
For 1-D case, the transport equation with linear

anisotropic scattering for one-speed neutrons can be
written

ow(x,
u YR )=
ox

1
CG ’ ’ ’
=TT [y ')A+ 36y p' yd @)
4

with free space boundary and symmetry conditions
w(a,u)=0 (3a)
w(x, )=y (=x,—p), u>0 (3b)

Here, the slab is thought to be finite, homoge-
neous with a thickness of 2a extending fromx = —a
to x=a in units of mean free path. Besides, it is sur-
rounded by identical reflectors from both sides.
w(x, 1) is the angular flux of the neutrons at position x
travelling in direction ¢ — cosine of the angle between
the neutron velocity vector and the positive x-axis, as
can be expected. b, is the average cosine of the scatter-
ing angle, ‘ <1/3 [12]

By following the studies previously carried out
by the authors [6-8], the neutron angular flux is ex-
panded as

!//(x,u)— 2(2 =00,0) Py ()T, (1),
T p=0
—a<x<a, —-1<u<l “4)

where T,(u) is the n™ order Chebyshev polynomials of
first kind representing the angular part of the neutron
angular flux and @,(x) — the moments of angular flux.
When eq. (4) is substituted into eq. (1) using the
orthogonality and recurrence relations of the
Chebyshev polynomials of first kind, respectively [13]

(1 (2-6,,)T, (#)Tm(#)dﬂzé 5)
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Tn+1 (:u)_zluTn (,u)+Tn—1 (H)ZO (6)

One can obtain the 73y moments of the angular
flux

49 0) | o (1), (x) =

) TZ(DZn(x) n=0 (7a)
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40, () ddy(x)
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201®, (x)=

and in general,

d(pn+l (x) + dd)n—l ()C) +

265.:@, (x)=0, n>2 (7c)

dx dx
The solutions for eq. (7) are established in the
form [11]

@, (x)=Gn<v)exp[—"ij (8)
v

In order to obtain a system of equations for the

eigenvalues, one should replace eq. (8) ineq. (7) to get

G, (v)+v(l-c) GO(v):—Zvc% fzz“(v), n=0 (9a)
n=14n -
G,(V)+Gy(v)+2vG, (v)=

=6b, vc{3G1 ()= 3 -G V)

} n=1
a1 (2n+1)* 4 (9b)
G, (WM+G,_ (V)+2vG,(v)=0, n=2 (9¢)

where G_1(v) =0and Gy(v) =1 are taken so and by fol-
lowing the same procedure as in Py approximation
[14], the discrete and continuum eigenvalues can be
obtained by setting Gy + (V) =0 in egs. (9) for the N
order approximation of the present method. In particu-
lar, for low order approximations, eqs. (9) can be car-
ried out manually and analytic expressions for the
eigenvalues can be found and they can be calculated
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for various values of ¢ and ;. However, for higher or-
der approximations, since the number equations in-
creases, it becomes difficult to get eigenvalues from
egs. (9). Therefore, a matrix notation can be preferred
to calculate the eigenvalues for higher order approxi-
mations and so eqgs. (9) can be written in a matrix form

[M(V)]G(v)=0 (10)

where M(v) is the (N + 1) x (N+ 1) coefficient matrix and
G(v) is a column matrix, G(v) = [Gy(V), Gy(V),...Gx(V)]"-
The matrix equation given in eq. (10) represents a system
of linear homogeneous equations. Since setting G(v) =0
gives an undesired trivial solution, for a non-trivial so-
lution for the discrete eigenvalues, the determinant of
the coefficient matrix should be equal to zero, i. e.,
det [M(v)] =0.

The discrete eigenvalues are computed using se-
lected orders of 7y approximation from eq. (10) for
various values of c and b,. Since an eigenfunction cor-
responds to each v, eigenvalues, a linear combination
of the eigenfunctions should also be a general solution
for the flux moments for odd numbers of N

N +1

D, (x)= é 2G, (v, ){eXp(C’T"}

Vi

+(—1)"exp[—wﬂ, n=13,..,N (1)

Vi

The linear combination constants A, 's can be de-
termined from the physical boundary of the system,
and the parity relation of G (—v) = (-1)"G,(v) is used.
However, in this problem there is no need to calculate
the 4,'s, since they are disappeared in the criticality
condition. Therefore, when the flux moments given in
eq. (11) are replaced in eq. (4), one can obtain the gen-
eral solution for the transport equation (eq. (1))

N+l
2
V’(x’”)zg > {j’kGO(Vk )To(/l)cosh[GijJr
T k=1 Vi
LG, (v {exp[“”} (-1’ exp[—wﬂTn (u)}
n=1 Vi Vi
(12)

BOUNDARY AND CRITICALITY CONDITIONS

In one of the studies about the inabilities of the
Py method in some circumstances, it is stated that the
Py approximation in slab geometries is a rather poor
representation of the angular flux near material bound-
aries [15]. Experience indicates that the Marshak
boundary conditions are somewhat more accurate than
the Mark conditions, at least for small N [14]. There-
fore in this study, the Marshak boundary condition

which is based on the condition of zero incoming cur-
rent at the vacuum boundary is preferred to use for the
calculation of the critical size of the slab surrounded
by identical reflectors from both sides. It is therefore
for T approximation [14]

1

[ly(am)~Ry(a. Il (-w)dp =0, k=135....N

0 (13)
The criticality equation can be obtained by using eq.

(12) in eq. (13) with the parity relation of the Chebyshev

polynomials of first kind; 7, (1) = (1T, (~)
N +1
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where the integrands /i and /, \ are defined as,

1
[T (wydpu= D"y (15)
0
1 1, k=0,
I =[T, (wydu= 1/2, k=1, (16)
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1
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and
@ (k,n)=[ksin(kn/2)cos(nn/2) + nsin(nm/2)cos(km/2)]-
(=K -1
A similar matrix representation can be carried
out for the criticality equation as for the calculation of
the eigenvalues given in egs. (9). Thus, eq. (14) can
also be written in the matrix form as,

[Mf (@)A, =0 n=12...(N+1)/2,

(19)
k=12,...,(N+1)/2

where Ml,; (a) is the coefficient matrix including the
parameters of the critical half-thickness a, eigenvalues
Vi, and collision and scattering parameters with
(N+1)/2 x (N+ 1)/2 elements, Ay is the column vector
with elements of linear combination constants [A, 4,
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e AN+ 12 ]T and 0 is a null vector. By following the
same procedure as in eq. (10), a non-trivial solution of
eq. (19) can be found by equating the determinant of
the coefficient matrix to zero, i. e. det [Mﬁ (a)]=0.For
instance, for 7 approximation, an analytic expression
for the critical half-thickness of the reflected slab can
easily be obtained by setting N =1 in eq. (14) or eq.
19)

a= ! tanh ™! 3 [1=he 1=k
o1+/2(1=c)(1-b,¢) 2\ 2(1-c) I+R

(20)

NUMERICAL RESULTS

The reflected critical slab problem for one-speed
neutrons in an uniform finite slab of thickness 2a is
studied in the case of linear anisotropic scattering.
Modified 7y method, previously carried out by the au-
thors [6-8], is used for the solution of the problem us-
ing Marshak boundary conditions for various values
of ¢, b, and R. During the calculations, the total mac-
roscopic cross-section is assumed to be its normalized
value, i. e.or=1 cm™' and all the numerical results for
both eigenvalues and critical thicknesses are per-
formed using Maple software.

In the method, first the neutron angular flux is
expanded in a series the Chebyshev polynomials of
first kind as in previous works [6-8] and then 7 mo-
ments of the flux are obtained. After a reasonable
solution is presented for the scalar neutron flux in eq.
(8), the discrete eigenvalues are computed by setting
Gy 1(v)=0inegs. (9) oreq. (10) for various values of
cand b,. Finally, the critical thicknesses of the slab are
computed by using the criticality equation given in eq.
(14) or the matrix equation in eq. (19). The calcula-
tions are maintained up to the order of 7,y approxima-
tion which is reported as to be efficient in the case of
using Marshak boundary conditions [14].

The critical thicknesses for one-speed neutrons
are calculated using the present 7y, method for typical
values of the cross-section parameter ¢, from 1.01 to
2.00, anisotropy parameter b, from—0.3 to 0.3 and the
reflection coefficient R, from 0.00 to 0.99. Moreover,
the results obtained from the present method are tabu-
lated in the tables together with the results obtained
from the traditional P method and the ones from liter-
atures for comparison. While the exact results pre-
sented in literature are quoted from Lee-Dias and
Aranson [15, 16], the other results are from the study
of Atalay [10].

The critical thicknesses for one-speed neutrons
in a bare slab (R = 0.00) calculated by the present Ty
method are given in tab. 1 for various values of the
cross-section and anisotropy parameters. In this table,
the results obtained by the present method, as well as
the results obtained for the isotropic scattering quoted

from refs. [15, 16], by Case's singular eigenfunction
method quoted from Atalay [10] and by the traditional
Py method, are given. Therefore, a comprehensive
comparison can be done between the results obtained
from the present 7y, method and the results that already
exist in literature. In addition, from the first table
through the last one, one can easily realize the effec-
tiveness of the method used in this study by observing
the good accordance between the results. Meanwhile,
the critical thicknesses for one-speed neutrons in a re-
flected slab are calculated for the same cross-section
and anisotropy parameters with the reflection coeffi-
cients R changing from 0.25 to 0.99. Those results are
also given in tabs. 2, 3, and 4.

It is stated, in Theory and equations part of this
study, that the transport equation is established under
consideration of a system without a source and thus, the

Table 1. The critical slab thicknesses as calculated by
Ty approximation, compared with Py and literature
(R =10.00)

C

1.01 110 | 1.20 | 140 | 2.00
—0.314.74922|3.81288|2.35148|1.36304| 0.59485
0.0 |16.66256|4.23008|2.58228 1.47717| 0.63120
To |0.1|17.49315|4.40628(2.67813|1.52347|0.64532
0.2 |18.46632|4.60899|2.78720(1.57533| 0.66071
0.3 19.62842|4.84592/2.91302 |1.63408| 0.67758
~0.3]14.74778|3.81156|2.35024 1.36166| 0.59212
0.0 |16.66068|4.22842|2.58076 |1.47566| 0.62836
Py | 0.1 |17.49194|4.40446|2.67648|1.52186| 0.64242
0.2 |18.46487|4.60697|2.78538 1.57364| 0.65775
0.3 19.62568|4.84364|2.91098 |1.63226| 0.67458
0.0 |16.65904(4.22674|2.57968 |1.47688| 0.63258
Atalay | 0.1 |17.48930|4.40260|2.67530|1.52390| 0.65236
[10] | 0.2 |18.46196|4.60486|2.78406|1.57676| 0.67816
0.3 19.62374|4.84124/2.90948 |1.63694| 0.71692

[Efaf;] 0.0 |16.65902|4.22662|2.57876|1.47320| 0.62206

by

Table 2. The critical slab thicknesses as calculated by
T, approximation, compared with Py and literature
(R=0.25)

c
1.01 1.10 1.20 1.40 2.00

—0.3 ]14.06923/3.26999 | 1.90829|1.04070]0.42121
0.0 [15.781673.54555|2.03603|1.092210.43402
Ty | 0.1 |[16.51606 3.65646|2.08574|1.11154]0.43864
0.2 [17.369483.78005 |2.13996|1.13218 | 0.44344
0.3 [18.3783013.91906 |2.26063 | 1.15427 | 0.44846
—0.3 [14.06644)3.26784 | 1.90648 | 1.03890 | 0.41866
0.0 [15.77810/3.54294 2.03392|1.090300.43140
Py | 0.1 |16.51268/3.65364|2.08352|1.10958|0.43596
0.2 [17.36563)3.77698 | 2.13759|1.13016 | 0.44073
0.3 [18.3735013.91570|2.19692|1.15220 | 0.44570
0.0 [15.74156/3.51332]2.01042|1.07260 | 0.42806
Atalay| 0.1 16.47158 3.620502.05682|1.09348|0.43550
[10] | 0.2 17.319473.73955|2.10703 | 1.11182|0.44589
0.3 [18.321683.87306/2.16166|1.131100.46330

by
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Table 3. The critical slab thicknesses as calculated by Ty
approximation, compared with Py and literature
(R =0.75)

C

1.01 1.10 1.20 140 | 2.00

—0.3 19.55886|1.29242|0.648350.31410|0.11432
0.0 [10.17593/1.31066|0.65351|0.31552|0.11458
Ty | 0.1 [10.41385/1.31694|0.65527|0.31600|0.11467
0.2 [10.67203/1.32334|0.65704 |0.31648|0.11476
0.3 [10.95280/1.32985 |0.67476 | 0.31696 | 0.11485
—0.3 [5.54960|1.29012 |0.64690 | 0.31306 | 0.11344
0.0 [10.165181.30828 |0.65204 | 0.31448|0.11370
Py | 0.1 [10.402421.31454]0.65378|0.31494(0.11378
0.2 [10.65975/1.32091 |0.65554 | 0.31542|0.11387
0.3 [10.94038/1.32740|0.65732|0.31590|0.11396
0.0 |9.89338|1.24756|0.62088 | 0.30064 | 0.05535
Atalay, 0.1 [10.112621.251040.62064 | 0.30000 0.11132
[10] | 0.2 [10.34944|1.25442(0.62022|0.29918|0.11260
0.3 10.60644]1.25774|0.61960|0.29818 | 0.11550

by

Table 4. The critical slab thicknesses as calculated by T,
approximation, compared with Py and literature
(R=10.99)

C

1.01 1.10 1.20 140 | 2.00

—0.3 [0.50137|0.04879 |0.02371{0.01129 | 0.00406
0.0 |0.501450.04879|0.02371|0.01129|0.00406
Ty | 0.1 |0.50148]0.04879|0.02371|0.01129 |0.00406
0.2 0.501520.04879|0.02371|0.01129|0.00406
0.3 |0.50151/0.04879|0.02371|0.01129|0.00406
—0.3 10.50038 |0.04868 | 0.02365 | 0.01125 | 0.00402
0.0 |0.50046|0.04868|0.02365 |0.01125|0.00402
Py | 0.1 |0.500500.04868 |0.02365|0.01125|0.00402
0.2 |0.50054 | 0.04868|0.02365 |0.01125|0.00402
0.3 |0.50056|0.04868|0.02365 |0.01125|0.00402
0.0 |0.469860.04582|0.02234|0.01070|0.00392
Atalay| 0.1 |0.46978|0.04574|0.02228|0.01066 | 0.00394
[10] | 0.2 |0.46971|0.04565|0.02220|0.01062|0.00398
0.3 |0.46964 |0.04556|0.02212|0.01056 | 0.00408

b

number of neutrons propagated in the system is as-
sumed to be conserved. Since then, it is seen from the
numerical results given in the tables, the critical thick-
ness of the slab decreases with increasing values of the
reflection coefficient and it approaches to zero when the
reflection coefficient goes to unity, as expected. This
manner can be explained physically that the distribution
of the neutrons in the system is said to be completely
dense in the normal plane, x = 0. Another point ob-
served in the tables is that the critical thickness of the
slab decreases when the cross-section parameter ¢ in-
creases. It can also be said that the critical thickness ap-
proaches to zero with increasing values of the
cross-section and anisotropy parameters together with
the increasing values of the reflection coefficient, as ex-
pected. This zero value of the critical thickness is not
achieved in this study but, it can be asserted that it is
possible if the order of the approximation is increased to

N > 9. However, the critical thickness of the slab in-
creases with the increasing values of the anisotropy
parameter b, ranging from —0.3 to +0.3 for all values of
the cross-section parameter c. In other words, the criti-
cal size of a system with reflectors, where the neutrons
are thought to scatter anisotropically, represents the
monotonic behavior.

Another important point that will come from the
tables is that the numerical results for the critical thick-
ness, obtained from the present method, are seen to be
approximately the same with the ones obtained from
Py method and the exact ones. This confirmation is ex-
pected since both the Legendre and Chebyshev poly-
nomials take place in the same family, i. e. Jacobi poly-
nomials. Therefore, as claimed in the Introduction, the
T\ method is an alternative to traditional Py method,
with their very similar results given in the tables.

CONCLUSION

In this study, a modified version of the 7Yy
method, previously applied by the authors [6-8] in the
solution algorithm of the transport equation, is used
for the reflected critical slab problem with linear
anisotropic scattering. As in their studies, the numeri-
cal results obtained by the present method are in good
accordance with the ones already presented in litera-
ture. This is expected since the Chebyshev and
Legendre polynomials are the members of the same
family, i. e. Jacobi polynomials. Since the results tabu-
lated in comparison with the literature values indicate
the applicability and the effectiveness of the present
method, one can easily conclude that an alternative
technique is derived and it can be a source of inspira-
tion for the researchers to solve or complete other
problems in science and engineering.
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Xakan O3TYPK

YTULAJ IMHEAPHO AHU3O0TPOIIHOI' PACEJAIbA
MOHOEHEPTETCKUX HEYTPOHA HA KPUTUYHOCT ILNIOYE CA
PE®JIEKTUBHUM I'PAHNYHUM YCJIOBHUMA

KopumrhemeM pazBoja HeyTPOHCKOT yraoHOr (uykca y UeOulieBibeBe MOIMHOME pBE BPCTE,
UCTpaXKeHa je KPUTHYHOCT IUIOYEe MOMOhY BPEMEHCKH HE3aBUCHE MOHOEHEPreTCKE TPAHCIOPTHE
jemHaumHe. [IpeTnocTaB/bEeHO je ma je MeIujyM OKPYKeH peIIeKTOPOM M [a ce HEyTPOHU pacejaBajy
aHn3oTtporHo. Kputnute ge6buHe yHu(pOpMHE OrpaHUUYeHE IUI0Ye, U3padyHaTe 3a ofabpaHe BPeHOCTH
koedunujenta pediekcuje W NapaMerpa aHU30TpONHUje, MpuKaszaHe cy TabemapHo. Hymepuuku
pesyaTaTu JoOUjeH! NPUKa3aHOM METOOM T00PO ce Cllaxky ca mojaluMa HaBeJJCHUM y TIUTEPATyPH.

Kwyune peuu: auneapHo anu3oitipoitHo pacejarbe, 4ebuuiesmed GoauHoM, KPUIUYHA HA04d,

peaeKcusHU ZPAHUTHU YCA06



