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��������� Eigenvalues are obtained for one-dimensional steady-state neutron transport equation in slab 
geometry using Henyey-Greenstein (HG) phase function. Firstly, HG phase function is inserted into 
neutron transport equation then eigenvalues are calculated for different values of collision parameters c 
and t parameters. All results are calculated for P9 and U9 approximation and these results compared each 
other.
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In neutron transport problems, all scientist suggested 
valuable approximations and they solved many problems 
using various methods in different geometries. In the 
studies such as eigenvalue spectrum, criticality, flux 
problem, diffusion length, etc. they have also restrict to 
problem in the case of isotropic, anisotropic and strongly 
anisotropic. As well known, eigenvalues depend on the c 
values and the important coefficients such as diffusion 
length, diffusion coefficient and buckling also depend on 
the parameter c. In the system, as neutrons move 
complicated paths and these neutrons repeated nuclear 
collisions to describe an appropriate scattering function 
(phase function) is quite important in the solution of 
algorithm [1]. Scattering function gives the knowledge 
about behaviour of neutrons which can be absorbed or 
scattered in the reactor and as well known, as the 
incident neutron energy increases or the mass of 
interacting nucleus increases, neutron scattering becomes 
increasingly anisotropic [2]. In such cases, it is also 
difficult to predict the distribution of the neutrons in the 
system accurately. Up to now, different phase functions 
are used for the solution of the neutron transport 
equation and convenient results are obtained for each 
problem.  

Henyey-Greenstein phase function (HG) is used in 
several studies to describe stellar light propagation 
throughout an atmosphere [3-4] and light scattering in 
the sea-water [5-6]. HG phase function is also used in 
bio-medical applications by some researchers [7-8]. 
Recently, HG phase function applied to neutron transport 
equation in slab geometry by some researchers and they 
showed that it is convenient to calculate critical half 
thicknesses [9]. In one of the latest study, Bülbül et al. 
calculated critical radius using HG phase function in 
spherical geometry with PN approximation [10]. 

In this study, the eigenvalues have been calculated 
with UN approximation using HG phase function in slab 

geometry. The eigenvalues are calculated for the 9th 
order of UN approximation. Obtained numerical results 
are given in the tables and compared PN approximation. 
One can see the effect of the scattering parameter t on 
the solution from the tables and can also decide the 
mathematical derivations are convenient for the neutron 
transport equation solutions. 
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In slab geometry, the steady-state time-independent 
neutron transport equation without sources is given as  
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where ),( μψ x  is the angular flux or flux density of 
neutrons at position x traveling in direction µ, σT  and σS  
are total and scattering differential cross section, 
respectively. It is aimed to solve Equation (1) with HG 
phase function in this study and to do this, scientist use 
σS  in terms of HG phase function and it is given as 
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where σS is any non-negative coefficient, the parameter t 
is in the range of 10 ≤≤ t  and ΩΩΩ ′⋅=0μ  is the cosine 
of the scattering angel, 
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The steady state transport equation for one-
dimensional case can be written when the HG phase 
function given in Eq. (2) is inserted on the right hand 
side of Eq. (1),  
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 the equation can be written 
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To simplify the derivation of the equations, here a 
dimensionless space variable such that σTx/ν → x is 
defined and ν is the eigenvalues. In order to solve Eq. 
(4), it is well known that in the UN approximation the 
angular flux is expanded in terms of Chebyshev 
polynomial as   
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If the neutron angular flux ),( μψ x  given in Eq. (5) is 
inserted into Eq. (4), and the resulting equation is 
multiplied by Un(μ) and integrated over μ ∈ [−1,1] using 
the orthogonality properties and the recurrence relations 
of Chebyshev polynomials given below 
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One can obtain the UN moments of the angular flux for  
n = 0 and n = 1 respectively 
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In order to obtain the eigenvalue spectrum, a well-known 
solution is employed of the form [11], 
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As well known in UN approximation, the discrete and 
continuumν eigenvalues can be obtained by setting 

AN+1(ν,t) = 0 for various values of c and t. For instance, 
one can obtain the eigenvalues for U1 approximation 
letting  A2(ν,t) = 0, 
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From obtained eigenvalues, νk, k = 1,….,N + 1, the 
general solution of the flux moments for odd numbers of 
N, i.e. 
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where the coefficients αk can be determined from the 
physical boundary conditions of the system, and the 
parity relation of An(−ν,t) = (−1)n An(ν,t) is used. The 
other way to compute ν eigenvalues is to use the 
determinant of the coefficients matrix of An(ν,t) = 0, that 
is 

 0),()]([ =tνν AM                      (12) 

where A(ν,t) is the column vector given by [A0(ν,t), 
A1(ν,t), …, AN+1(ν,t)]T and M(ν) is a (N + 1) x (N + 1) 
square matrix. If one solves the equation det M(ν) = 0 
for any order N+1, it is clear that same results are 
obtained with the results of AN+1(ν,t) = 0. 
Table 1. The eigenvalues for c=1.01 and c=1.2 and different 
values of t parameters 

 

 

 

 
t 

c=1.01 c=1.2 
P9 U9 P9 U9 

0.00 5.75053987I 
0.944113891 
0.771095320 
0.503853642 
0.175087652 

5.75053987I 
0.916387696 
0.745729814 
0.478003149 
0.166360374 

1.19826501I 
0.947136093 
0.780103118 
0.515668192 
0.180883259 

1.19825343I 
0.920500197 
0.755077336 
0.488753622 
0.171664714 

0.25 6.64941196I 
0.948526547 
0.779202263 
0.510727741 
0.177697036 

6.64941196I 
0.922518128 
0.752627310 
0.484687660 
0.168655888 

1.41957434I 
0.954316077 
0.792491581 
0.525352617 
0.184263675 

1.41956964I 
0.930462699 
0.765337133 
0.498290747 
0.174579568 

0.50 8.16232721I 
1.001414356 
0.825302001 
0.542685181 
0.189058191 

8.16232721I 
0.986441109 
0.790568479 
0.514860964 
0.178697541 

1.82098326I 
1.040978655 
0.852946480 
0.567356918 
0.199060779 

1.82098176I 
1.031656343 
0.815217242 
0.537899614 
0.187562237 

0.75 11.6159435I 
1.421065877 
1.019227138 
0.680119610 
0.238384902 

11.6159435I 
1.418411784 
0.981682037 
0.640162449 
0.222912740 

3.09223490I 
1.921867006 
1.115927742 
0.755743458 
0.268552301 

3.09223487I 
1.921529396 
1.085095545 
0.708804312 
0.249212801 

1.00 97.39065321 
86.50633604 
67.94095710 
43.33953939 
14.88743390 

95.94929736 
84.12535328 
65.48607339 
41.54150130 
14.23148383 

4.869532643 
4.325316833 
3.397047842 
2.166976971 
0.744371695 

4.797464868 
4.206267664 
3.274303670 
2.077075065 
0.711574191 
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Table 2. The eigenvalues for c=1.5 and c=1.8 and different 
values of t parameters 
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The eigenvalue problem is studied using UN 
approximation for the steady-state neutron transport 
equation without sources. To solve problem HG phase 
function is inserted into transport equation and 
eigenvalues are obtained for U9 and P9 approximation. 
All computations are carried out using Maple software 
and the total macroscopic cross section is assumed to be 
its normalized value, σT = 1 cm−1. The eigenvalues can 
be calculated by setting  AN+1(ν,t) = 0 for various values 
of c and t.  Numerically calculated eigenvalues for c > 1 
are given in the Table and one pair of the roots is 
observed purely imaginary the others are real for 
increasing t parameters from 0.00 to 0.75. The whole 
eigenvalues for t=1 are real and for c=1.5, c=1.8, 
t=0.75, physically all eigenvalues are existing but 
mathematically it could not be calculated. We can say 
that HG phase function works for the calculation of the 
eigenvalues in slab geometry for neutron transport 
equation. The aim is in this study that to show 
applicability of HG phase function to neutron transport 
equation in slab geometry using UN approximation and 
to calculate eigenvalues which can be used for the 
calculation of criticality, scalar flux, albedo problem, etc. 
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t 

c=1.5 c=1.8 

P9 U9 P9 U9 

0.00 0.68913625I 
0.949871825 
0.789325683 
0.530823974 
0.190431649 

0.68901526I 
0.924354710 
0.764749794 
0.502907528 
0.180422216 

0.50289477I 
0.951455771 
0.795051896 
0.542085776 
0.200228911 

0.50258059I 
0.926634470 
0.770787789 
0.513738785 
0.189458321 

0.25 0.84229018I 
0.963703864 
0.811700416 
0.547487352 
0.195446003 

0.84224522I 
0.943353644 
0.783146576 
0.519336062 
0.184606249 

0.63006128I 
0.975481641 
0.830349978 
0.568444829 
0.207622727 

0.62997154I 
0.959025451 
0.799692774 
0.539728381 
0.195445564 

0.50 1.16637397I 
1.168140795 
0.894552174 
0.609460179 
0.217087207 

1.16637330I 
1.165643510 
0.854498094 
0.577613102 
0.203336724 

0.96168368I 
1.604543375 
0.930864256 
0.655157243 
0.238485840 

0.96178107I 
1.604406796 
0.893691006 
0.621058822 
0.221725882 

0.75 ------ 
------ 

1.398498024 
0.908153798 
0.335331613 

------ 
------ 

1.386173187 
0.849845608 
0.305898020 

------ 
------ 

1.119480408 
4.32752747I 
0.446009951 

------ 
------ 

1.064924851 
4.32756475I 
0.395268803 

1.00 1.947813057 
1.730126733 
1.358819137 
0.866790788 
0.297748678 

1.918985947 
1.682507066 
1.309721468 
0.830830026 
0.284629677 

1.217383157 
1.081329210 
0.849261962 
0.541744242 
0.186092924 

1.199366218 
1.051566914 
0.818575918 
0.519268766 
0.177893548 
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