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Abstract
This study proposes a new method suitable for the visual analysis of biomedical time series

that is based on the examination of biomedical signals in the density-amplitude domain.

Toward this goal, we employed two publicly available datasets. In the first stage of the

study, density coefficients were computed separately by using the Parzen Windowing

method for each class of raw attribute data. Then, differences between classes were deter-

mined visually by using density coefficients and their related amplitudes. Visual interpreta-

tion of the processed data gave more successful classification results compared with the

raw data in the first stage. Next the density-amplitude representations of the raw data were

classified using classifiers (SVM, KNN and Naïve Bayes). The raw data (time-amplitude)

and their frequency-amplitude representation were also classified using the same classifi-

cation methods. The statistical results showed that the proposed method based on the den-

sity-amplitude representation increases the classification success up to 55% compared

with methods using the time-amplitude domain and up to 75% compared with methods

based on the frequency-amplitude domain. Finally, we have highlighted several statistical

analysis suggestions as a result of the density-amplitude representation.

Introduction

The diagnosis of related diseases is dependent on the visual differences between the signals
obtained from healthy and unhealthy subjects. However, biomedical signals are generally
obtained as time series in a time-amplitude domain, which can be visually complex [1]. Since,
the visual analysis is difficult in a time-amplitude domain, feature extractionmethods have
been used as a pre-processing step. The most commonly used feature extractionmethod is the
representation of the original signal in a frequency-amplitude domain [2–4]. Fourier transfor-
mation is a widely used and well-knownmethod for frequency domain representation of raw
signals. However, in a Fourier transformation, the frequency-amplitude representation is not
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always useful for visual analysis [5–7]. For example, Fig 1 shows a real EEG signal consisting of
two different classes and their power spectral densities. As can be seen in Fig 1, it is difficult to
distinguish the two signals in the time-amplitude and frequency-amplitude domains.

The main reason for this problem is that the frequencies and amplitudes of different signals
may be the same or very similar over a prolonged period [8–10]. Therefore, different domain
transformation methods based on a local examination are also used. For example, short-time
Fourier and wavelet transformations are widely used for local examination. However, different
signals may not always show local differences.Moreover local differences in the same class
(healthy subjects or patients) may occur during different time periods [11–13]. Thus, in the lit-
erature, various feature extraction and classificationmethods have been used to overcome this
problem [14, 15]. For example, other feature extractionmethods such as an independent com-
ponent analysis, principal component analysis or a modified version of Fourier analyses can be
used. But the mathematical equations of these methods are more complex. Also, the represen-
tation of the raw signals in their created domains is difficult to understand except by signal pro-
cessing experts. Therefore, it is very difficult for medical experts who need to make visual
interpretations to use these methods [16]. As a result of these problems, an alternative method
suitable to visual analysis and classification is needed.

The increase or decrease of the distance differences between samples is a common charac-
teristic of digital biomedical time series (signals). For example, biomedical signals may some-
times contain samples that are far away from or close to each other. Since, the distance
differences between samples do not occur throughout the entire signal, the visual detection of
these differences is difficult [17]. Distance differences between samples in a specific time inter-
val change the density of the signal in that interval. In this situation, the characteristic based on
the distance between samples may be detected by determining the density difference. There-
fore, density-amplitude domain representation of biomedical signals can be beneficial to visual
interpretation.

In the first stage of this study, density coefficients of signal classes were obtained using the
Parzen Windowing Method. Then, the class differences were visually examined in a density-
amplitude representation. Upon visual examination, the characteristic differences of classes
were visible in the density-amplitude domain representation. In addition, both the raw and
transformed signals (all the signals represented in time-amplitude, frequency-amplitude and

Fig 1. Display of a sample EEG signal represented in the time-amplitude and frequency-amplitude

domains.

doi:10.1371/journal.pone.0163569.g001
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density-amplitude domains) could be used for the classification. The classification result dem-
onstrated that the proposedmethod increases the classifier’s success. In a sense, the method
proposed in this study is an improved version of the method proposed in our previous study
[18]. In the previous study, time series were converted to density coefficients.However, visual
interpretation of the data by using the coefficientswas not possible. In this study, combined
use of the amplitude values and corresponding density coefficientswas proposed. Therefore,
the method proposed in this study allows for visual interpretation of the data. However previ-
ous study doesn’t allow for visual interpretation of the data. Recently, complex network theory
has been developed to characterize experimental univariate time series and multivariate time
series [19–22].

Materials and Methods

Materials

EEG data represent a rather complex biomedical time series. Althoughmany methods have
been suggested, Fourier transformation-based frequency-amplitude domain representation is
still widely used to process the EEG data. [23]. However, visual detection of differences between
EEG signals in the time-amplitude and time-frequencydomains without pre-processing meth-
ods is difficult. Therefore the EEG signals are suitable for testing the proposedmethod. In this
study, the EEG Eye State biomedical dataset was used for a detailed analysis. This dataset con-
sists of EEG records with eyes open or closed. Therefore, there are two classes in the dataset.
Each attribute of the dataset includes a signal from one EEG channel (amplitude data). The
dataset was obtained from one subject. The duration of the measurement was 117 seconds. The
sampling rate was 128 Hz. For each channel, single-trial analysis was used to provide a system-
atic mapping between the brain activity and stimulus information space and test the proposed
method for possible cases. Signals were filtered using a Low Pass filter with a cutoff that was set
at the limit of the EEG gamma band. A notch filter at 50Hz was used to eliminate the line inter-
ference artifacts. In addition, linear-filter method was used to eliminate the other EEG artifacts.
The dataset was taken from a publicly available UCI database (https://archive.ics.uci.edu/ml/
machine-learning-databases/00264/) [24]. The characteristics of this dataset are shown in
Table 1.

In addition, another dataset (sEMGHand Movement Dataset) taken from the UCI database
(https://archive.ics.uci.edu/ml/machine-learning-databases/00313/) was used in the study to test
and prove the classifier success of the proposedmethod [25]. There are six gestures of five vol-
unteers in this data set. The aim is to distinguish the hand gestures for each volunteer. Charac-
teristics of the sEMG data are as follows. The sampling rate was 500 Hz. The recording time was
six seconds for each gesture. Signals were filtered using a Butterworth Band Pass filter with a
low cutoff of 15Hz and high cutoff of 500Hz. A notch filter at 50Hz was used to eliminate the
line interference artifacts. The general characteristics of the sEMG dataset can be seen in Table 2

Table 1. Characteristics of the EEG Dataset Used in the Study.

Dataset Number of Samples Number of Attributes Number of Classes

EEG Eye State 14980 14 2

doi:10.1371/journal.pone.0163569.t001

Table 2. Characteristics of the EEG Dataset Used in the Study.

Dataset Number of Samples Number of Attributes Number of Classes

EMG Hand Movement 3000 2500 6

doi:10.1371/journal.pone.0163569.t002
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Methods

In this study, the density coefficientswere separately calculated for each class of each attribute
(attributes are columns of the dataset). In other words, the density coefficientswere calculated
separately for each data class obtained from one EEG channel. Then, a new density-attribute
matrix consisting of density coefficients and raw data (amplitude values that are the source of
coefficients)was created by combining the old and new attributes in a single matrix. Next, the
column pairs (two-columnmatrix parts that belong to each channel) consisting of the raw data
and related coefficientswere tested visually on two-axis graphs. The schematic block diagram
of this study is shown in Fig 2. The obtained two-columnmatrices were tested by classification
methods to determine the success statistically. The density-amplitude matrix creation process
is shown in Fig 3.

It must be noted that the density coefficient calculation is made separately for each class, as
shown in Fig 3. In other words, the density coefficient of a class element belonging to one chan-
nel is calculated considering only the other elements of the same class. In this study, the density
coefficientswere obtained by using the Parzen Windowing method. According to this method,
the size and form of an R area (window) is fixed for the estimation of the density coefficients.
To determine the density coefficient of an element, the R area is centered on this element, and
the number of other elements in this area is calculated. In this case, the density value (coeffi-
cient) will be calculated by substituting the φ(u) function in Eq 2 to determine the elements to
be included in the density calculation instead of the k function in Eq 1.

PðxÞ ¼
k=n

V
ð1Þ

In Eq 1, x is the sample (element), n is the total number of elements, and V is the volume

Fig 2. Flow diagram of the study (Attribute (m-n) means the class m data in the nth attribute).

doi:10.1371/journal.pone.0163569.g002
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(dimension) of the dataset.

φðuÞ ¼
1; jujj <

1

2
; J ¼ 1; . . . ; d

0; Otherwise
ð2Þ

8
<

:

As seen in Eq 2, the φ(u) value will be 1 if the |uj| element exists within the window, other-
wise it will be 0. That is, any |uj| element will contribute to the density coefficient if it is within
the window. When the φ(u) function in Eq 2 is substituted in the density function in Eq 1, the
density coefficients of the elements will be calculated using Eq 3

PφðxÞ ¼
1

n
Si¼n

i¼1

1

hd
φ

x � xi

h

� �
ð3Þ

Where d is the dimension of the dataset [26–28]. Eq 3 means that the density coefficient of an
element at the center of the window is proportional with the total number of the other elements
within the window. Fig 4 shows a sample calculation of the density coefficients for X1 and X3

elements of dataset X, X = [X1, X2, X3, X4] = [(1,0) (2,0) (3,0)(5,0)].
The density coefficients of the sample dataset in Fig 4 are 0.1250 for X1, 0.1250 for X2,

0.1875 for X3 and 0.625 for X4. As seen in Fig 4, for each coefficient calculation, at least one ele-
ment contributes to the calculation of the coefficient.This is achieved because of the selection
of the window width as two times the maximum distance between the elements. This means
that the window width must be at least two times the maximum distance between the elements
in order to provide density coefficient for all of the elements. However, another issue that must
be taken into consideration is that the coefficientsmust be as different as possible. If the

Fig 3. The matrix creation process used in the study (Amps. (n-m) means the class-n data of nth EEG channel

signal).

doi:10.1371/journal.pone.0163569.g003

Fig 4. Calculation of the density coefficients for two elements in a sample dataset.

doi:10.1371/journal.pone.0163569.g004
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window size is more than required (more than two times), many coefficientswill be same as
each other, and this will decrease the classifier accuracy [29, 30]. In this case, the more distant
element gives the lowest density coefficient in the dataset. The coefficient of an element located
at the center of the densest area in the dataset will be the biggest. As seen in Fig 4, the largest
distance between the elements is 2 (the distance between the elements located at 3 and 5 on the
horizontal axis), and the window width is two times this value. Therefore, the density coeffi-
cient of X3 located in the densest area was the highest (0.1875), and the density coefficient of X4

located in the rarest area was found to be the lowest (0.6250). Furthermore, it was possible to
assign density coefficients to all the elements, and the density coefficientswere calculated as
different from each other as possible.

Since the objective of this study is to create a model that will allow the visual differentiation
of signals that are difficult to differentiate in time-amplitude and frequency-amplitude
domains, we used the example signals shown in Fig 5.

In Fig 5, two different signals and their frequency spectrums are shown. Both of the signals
consist of two sinusoidal components of 5 Hz and 10 Hz. The occurrence times of the compo-
nents of the signals are different. The amplitudes of the signal components having the same fre-
quency are different from each other by 10%. This amplitude difference can be identified if the
example signals are examined carefully. However, such small differences are continuous in bio-
medical signals, and thus visual detection of such differences would be rather difficult. The fre-
quency spectra of the signals are almost the due to the same frequency content, a common
issue in biomedical signals. Very detailed examinations or some preliminary procedures are
required to analyze such small differences, particularly on EEG records consisting of thousands
of samples. These types of signals cause failure in classification [31].

Considering the signal-X in Fig 5, the first half is 5 Hz and the second half is 10 Hz sine
waves. This situation is reversed in the signal-Y, which causes dense locations of the signals
that are different. As an average calculation, the maximum amplitudes of the signal-Y compo-
nents are 10% less than those of signal-X. In this case, the difference between the example
signals in Fig 5 is clearly revealed by the relation between their amplitudes and related

Fig 5. Display of two different signals represented in the time-amplitude and frequency-amplitude

domains.

doi:10.1371/journal.pone.0163569.g005
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coefficients.When the proposedmethod is used for the sample signals shown in Fig 5, the den-
sity-amplitude domain is as shown in Fig 6.

Fig 6 shows that the signals are no longer similar, and the difference between them can be
visually detected easily. As also seen in Fig 6, the differences in the densities of the amplitudes
near zero are greater because the density coefficients of amplitudes with lower values increased
as the signal-Y amplitudes increased closer to zero. According to another definition, the density
coefficient increase is inversely proportional to the scattering of the elements of the signal. In
summary, the proposedmethod will be useful in visually differentiating the signals that are dif-
ficult to differentiate in time-amplitude and frequency-amplitude domains.

In addition, the well-known ROC analysis and Cross Validation (CV) methods were used to
obtain more reliable results. According to the conventions of the CVmethod, in each cycle
90% of the data was used as a training set and the remaining 10% was used as a test set. Using
the ROCmethod, the accuracy, sensitivity, and specificity rates can be computed by:

Accuracy ¼
TPþ TN
Pþ N

ð4Þ

Sensitivity ¼
TP
P

ð5Þ

Specificity ¼
TN
N

ð6Þ

Where TP is the number of correctly classified disorders (Disorders correctly classified as dis-
order), FP is the number of falsely classified disorders (Healthy ones incorrectly classified as

Fig 6. Density-amplitude domain representation of 3rd channel data (Blue: class-1 data, Red: class-2

data).

doi:10.1371/journal.pone.0163569.g006
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disorder), TN is the number of correctly classified healthy subjects (Healthy ones correctly
classified as healthy), and FN is the number of falsely classified healthy subjects (Disorders
incorrectly classified as healthy). Also, P is the number of disorders, and N is the number of
healthy subjects [32].

Results and Discussion

The EEG dataset used in this study has periods recorded when eyes are opened or closed. The
aim is to differentiate/classify the two classes consisting of closed eye and opened eye periods.
In the first stage, the visual interpretation advantage of the proposedmethod will be shown on
a randomly selected attribute of the EEG data matrix. Then, the results of the proposedmethod
will be applied to the classifiers to evaluate the classification accuracies. The time-amplitude
and frequency-amplitude representations of one attribute (third column of the dataset) are
shown in Figs 7 and 8, respectively.

Fig 7. The time-amplitude representations of classes belonging to the same attribute. This attribute is

also used in this study.

doi:10.1371/journal.pone.0163569.g007

Fig 8. The frequency-amplitude representations of classes belonging to the same attribute. This

attribute is also used in Fig 7.

doi:10.1371/journal.pone.0163569.g008
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The peaks shown in Fig 7 may be due to eye movement or other causes [33]. For this reason,
it is difficult to determine whether the eye is open or closed using the graphs in Fig 7. In Fig 8,
it is impossible to determine the change in eye status (open/closed)without performing some
preliminary procedures. However, the difference between the eye situations can be revealed by
using the density-amplitude relationship.

Therefore, the two column density-amplitude matrix of the attribute used in Figs 7 and 8
was obtained. Then the density-amplitude graph was created by using the two columnmatrix
values shown in Fig 9.

As shown in the distributions in Fig 9, there is a visible density difference between the class
amplitude values for all of the points except the outliers. Thus, it can be seen that the data den-
sity is lower when the eyes are closed.

Furthermore, the biggest density-difference between the classes is across the average of the
amplitude values of the dataset. The class differences seen in the Density-Amplitude domain
can’t be detected in the Time-Amplitude or Frequency-Amplitude domains of the same data.

When Fig 9 is examined from another perspective, the density difference occurs between
4235 μV and 4290 μV. That is, the classes are different between these amplitude values. These
values are very close to the standard deviation range of the density-amplitude distributions. If
the amplitudes within the standard deviation of the density-amplitude distribution are filtered,
the classifier success will be further improved. Moreover, the statistical values (including stan-
dard deviation,mean value, etc.) can be examined visually. The classifier success is also
expected to be very high since the classes can be differentiated visually. In the second stage of
this study, the attributes (represented in Time-Amplitude, Frequency-Amplitude and Density-
Amplitude domains) were subjected to classifiers to test the ability to distinguish between
domains. The test results are shown in Table 3. 14 different channel data obtained from 1 sub-
ject were considered in Table 3. Also the number of Negatives (N) is 8257 and the number of
Positives (P) is 6723 for each classification process.

Fig 9. The density-amplitude representations of classes belonging to the same attribute. This

attribute is also used in Figs 7 and 8.

doi:10.1371/journal.pone.0163569.g009
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The K parameter providing the highest accuracy rate was used in the KNN classifier. In
addition, the Euclidean distance was used in the KNN classifier. In the SVM classifier, a linear
kernel was used and the margin providing highest accuracy rate was selected (i.e., margin was
selected so as to make training error small). The Maximum LikelihoodEstimator (MLE) was
used to select parameters in the Naive Bayes classifier. As seen in the results given in Table 3,
the classification success of the density-amplitude matrices was the highest, supporting the
visual differentiation ability. That is, the classifier success can be increased by representing the
raw data in the density-amplitude domain.

In this study, the attribute used in Fig 9 was tested to show that the distinguishing ability of
the proposedmethod is not incidental. However, artificial classes were created by changing
known class labels in this test stage. In the artificial class creation stage, the first and second
halves of Class-1 were recognized as different classes. Then Class-1 was classified assumed as an
attribute data. The Density-Amplitude graph of this artificial classified data is shown in Fig 10.

As seen in Fig 10, the class difference is not visible. Thus the proposedmethod is not inci-
dental and reveals only the class differences.

Finally, the proposedmethod was tested using a different data set to demonstrate the suc-
cess of the proposedmethod in a different biomedical time series. In this second classification
stage, the EMG data set was used. The classifier results are shown in Table 4. Six different ges-
tures requested 30 times from each of the 5 subjects were considered in Table 4. Also the num-
ber of Negatives (N) and the number of Positives (P) are 3000 for each classification process.

The K parameter providing the highest accuracy rate was used in the KNN classifier. In
addition, the Euclidean distance was used in the KNN classifier. In the SVM classifier, a linear
kernel was used and the margin providing highest accuracy rate was selected (i.e., margin was
selected so as to make training error small). The Maximum LikelihoodEstimator (MLE) was
used to select parameters in the Naive Bayes classifier. As shown in Table 4, the proposed
method increased the classifier success again.

In summary, the findings demonstrate the superiority of the proposedmethod over other
methods in biomedical time series analyses. Its strength is related to biological induced conver-
gence/divergence between the signal samples of biomedical time series. The proposedmethod
converts convergence/divergence to density coefficients and then associates the amplitudes
with related coefficients.Thus it offers a novel advantageous solution.

Conclusion

In this study, 2 biomedical time series that are complex in the time-amplitude and frequency-
amplitude domains were analyzed in the density-amplitude domain. The results demonstrated

Table 3. Classification Success Rates of EEG Datasets.

Classifiers Time-Amplitude Frequency-Amplitude Density-Amplitude

Accuracy Rate KNN 56.81% 60.04% 98.75%

Naive-Bayes 68.91% 53.23% 91.62%

SVM 57.56% 49.67% 9376%

Sensitivity Rate KNN 60.18% 63.34% 99.36%

Naive-Bayes 72.34% 56.72% 93.57%

SVM 62.49% 51.68% 94.76%

Specificity Rate KNN 53.44% 56.74% 98.14%

Naive-Bayes 65.48% 49.74% 89.67%

SVM 52.63% 47.66% 92.76%

doi:10.1371/journal.pone.0163569.t003
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that the proposedmethodmade possible the visual interpretation of characteristically complex
biomedical time series. For example, visual inspection of amplitude differences between two
different datasets, standard deviation differences and mean value differences were easily differ-
entiated. As a result of these analyses, some diseases can be visually diagnosed in the density-
amplitude domain, and biomedical time series can be classified with greater accuracy using
the proposedmethod.While the proposedmethod uses only four basic arithmetic operations
(+, -, × and�), the other methods use complex mathematical formulas. Therefore, the pro-
posedmethod will be faster and clearer for medical experts. In addition, this easy calculation
can permit an online evaluation while the signal is being recorded.

This method is especially useful for digital biomedical time series with sample convergence/
divergence characteristics. Thus, the proposedmethodmay also be more successful for local
analysis. E.g., analysis of similar signal changes of two signals that may occur in different time
periodswill be examined to determine the difference between them in relation to time. If so,

Table 4. Classification Success Rates of sEMG Datasets.

Classifiers Time-Amplitude Frequency-Amplitude Density-Amplitude

Accuracy Rate KNN 51.16% 54.21% 81.13%

Naive-Bayes 54.27% 60.23% 85.39%

SVM 53.56% 61.67% 86.56%

Sensitivity Rate KNN 52.18% 55.56% 82.21%

Naive-Bayes 55.23% 61.46% 86.78%

SVM 54.63% 62.63% 87.29%

Specificity Rate KNN 50.14% 52.86% 80.05%

Naive-Bayes 53.31% 59.00% 84.00%

SVM 52.49% 60.71% 85.82%

doi:10.1371/journal.pone.0163569.t004

Fig 10. The density-amplitude graph of the 3rd attribute of the dataset (Class-1 is divided to get two

fake (pseudo) classes. Both fake classes are related to the ‘eyes open’ status).

doi:10.1371/journal.pone.0163569.g010
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the use of the proposedmethod for local analysis may also be an alternative for STFT and
wavelet transformations.

However, it must be noted that the proposedmethodmay give erroneous results if the con-
vergence/divergence of samples are not related to biological origin. This may appear as a disad-
vantage; however, this problem is true of all of the other methods, as well. Therefore, this is
not a unique drawback of the proposedmethod. In other words, these sample types (samples
are not biological originated) known as the outliers are problem for all methods. If so, this dis-
advantage can be avoided by filtering (outlier filtering) the samples that are not biological
originated.

In conclusion, the obtained results will help expertmedical doctors interpret data and will
contribute to the visual and mathematical classification of biomedical time series. It provides
an alternative to the frequency-amplitude based analysis of biomedical time series.
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