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Abstract. in this study, the entire weight, joint displacements and load-carrying capacity of tubular lattice girders are 
simultaneously optimized by a multi-objective optimization algorithm, named Non-dominated sorting genetic algo-
rithm ii (Nsgaii). Thus, the structural responses of tubular lattice girders are obtained by use of arc-length method as 
a geometrically nonlinear analysis approach and utilized to check their member strengths at each load step according 
to the provisions of the American Petroleum Institute specification (API RP2A-LRFD 1993). In order to improve the 
computing capacity of proposed optimization approach, while the optimization algorithm is hybridized with a radial 
basis neural network approach, an automatic lattice girder generator is included into the design stage. The improved 
optimization algorithm, called impNsgaii, is applied to both a benchmark lattice girder with 17 members and a lattice 
girder with varying span lengths and loading conditions. Consequently, it is demonstrated: 1) the optimal lattice girder 
configuration generated has a higher load-carrying capacity ensuring lower weight and joint displacement values; 2) the 
use of a multi-objective optimization approach increases the correctness degree in evaluation of optimality quality due to 
the possibility of performing a trade-off analysis for optimal designations; 3) the computing performance of impNsgaii 
is higher than Nsgaii’s. 
Keywords: multi-objective optimization, lattice girder, geometrical nonlinearity, API RP2A-LRFD.

Introduction

The aesthetic appearance, lower constructing cost and 
higher load-carrying capacity of steel tubular structures 
makes them the most popular one of the structural engi-
neering applications (Wardenier et al. 1998; Wardenier 
2001; Kurobane et al. 2005). Particularly, the lattice 
girders, which are used to construct the roof structures, 
special industrial applications (cranes) and bridges, are 
well-known due to spanning long distances without any 
supports (Davison, Owens 2005; Nelson, McCormac 
2003). as in the design of the other steel structures, a 
well-known traditional approach to the design of lattice 
girders is to utilize a designer’s personal experience. This 
trial-error approach is based on checking the structural 
responses of lattice girder obtained by a linear structural 
analysis method for its certain configuration in accord-
ance with the provisions of a steel specification. How-
ever, whereas the determination of the best one among 
potential designations is required a longer computing 
time, the change in the shape of lattice girder have to 
be kept within small limits due to the computing proce-
dure used by the mathematical model of linear structural 
analysis approach. 

in order to overcome these bottlenecks mentioned 
above, a nonlinear structural analysis method should be 

integrated with an optimization approach (Kamat et al. 
1984; Hrinda, Nguyen 2008; Suleman, Sedaghati 2005). 
in this regard, the preliminary studies regarding to use 
of geometrically nonlinearity are based on utilization 
of strain energy densities of steel structure members or 
design sensitivity information for design optimization 
(Kamat, Raungasilasingha 1985; Wu, Arora 1988; Santos, 
Choi 1988). Although the recent optimization approaches 
have managed to integrate the nonlinear structural analy-
sis method with the provisions of a design specification 
(Saka 2007; Çarbaş, Saka 2012; Kaveh, Talatahari 2011), 
the computational expense is higher since any designa-
tion that has a negative determinant of global rigidity 
matrix has to been discarded (Carbas, saka 2011).

Since the mathematical model utilized to define the 
behavior of geometrically nonlinear lattice girder is based 
on computation of large joint displacements, the objective 
functions, entire weight, joint displacements and member 
forces are conflicted with each other. Therefore, the deter-
mination of a proper objective function for the design 
optimization of geometrically nonlinear lattice girder 
becomes an important task.

in this study, an optimization algorithm with mul-
tiple objectives, named Nsgaii is employed to gener-
ate optimal designations. The member strengths of lattice 
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girders computed by use of arc-length method is checked 
according to design constraints based on the provisions 
of API RP2A-LRFD specification (see further details in 
References of american Petroleum institute (aPi): aPi 
RP2A-LRFD (1993) and American Petroleum Institute 
(API): API RP2A-WSD (2000)).

In order to increase the computing efficiency of 
Nsgaii, a radial basis neural network approach is imple-
mented into computing procedure of NSGAII. Furthermore, 
the flexibility – of this improved NSGAII ( ImpNSGAII) is 
enhanced by inclusion of an automatic lattice girder gen-
erator into the design stage of proposed optimal design 
approach. The computing procedure of proposed optimi-
zation approach is accordingly coded in MATLAB.

This study begins by describing firstly multi- objective 
optimization problem including a brief introduction to 
the recent multi-objective optimization approaches in  
section 1. The objective functions and design constraints 
are introduced along with a verification example devised 
for the application of nonlinear structural analysis method. 
Then, the computing steps of proposed optimization 
approach are explained by presenting the toolbox names 
used for NSGAII’s algorithm in Section 2. Moreover, 
further details about coding the design problem in MAT-
LAB environment are summarized in Section 3. Whereas 
the computing performance of impNsgaii is evaluated 
in the section named “Discussion of results”. The last  
section is reserved to present the concluding remarks. 

1. Description of a multi-objective optimization 
problem and brief introduction of recent  
multi-objective optimization approaches

The basic elements of a general multi-objective optimiza-
tion problem are: m objective functions, J constraints and 
N design (decision) variables. it is formulated as follows:

1min/ max ( ) {( ( )),  . . . . ., ( ( )},  m F x f x f x x DS= ∈ ; (1)

{   , 1, 2,..... }L U
n n nDS x x x n N= ≤ ≤ = ; (2)

{ : ( ), only if , ( ) 0,  1,.., }jSS x DS F x g x j J= ∀ ∈ ≤ = . (3)

A decision variable set defined in a design variable 
space (DS) is indicated by X, upper and lower bounds of 
which are U

nx  and L
nx . it is also utilized to compute both 

objective functions f and constrains gj(x) in a solution  
space (ss). 

at each run of a multi-objective optimization algo-
rithm, a random solutions set is obtained. some of them 
are non-dominated solutions (none is better for all objec-
tives) and referred as “Pareto solution” defined in a con-
cept named as domination (Srinivas, Deb 1995). Thus, 
the Pareto solutions are used to form “Pareto front” which 
determines bounds of non-dominated solutions.

it is well known that a number of multi-objective 
optimization approaches has been utilized in various 

areas of engineering fields. This study does not propose 
to present and survey the multi-objective optimization 
approaches. Recent popular studies based on mimick-
ing the natural phonemes are briefly introduced. These 
are either generally nature (biologic and physique phe-
nomena) inspired approaches or their hybridizing vari-
ants. Preliminary one of the biologic-based approaches 
are evolutionary algorithms. For example, non-dominated 
sorting genetic algorithms (Nsgai and Nsgaii) by 
Srinivas and Deb (1995) and Deb et al. (2002), strength 
Pareto evolutionary algorithm (sPEa and sPEaii) by 
Zitzler and Thiele (1999), Zitzler et al. (2001), modified 
Nsgaii by Ramesh et al. (2011), sub-population genetic 
algorithm II (SPGAII) by Chang and Chen (2009). While 
some of the biologic-based approaches mimics directly 
an artificial immune system (an evolutionary immune 
approach by Tan et al. (2008)), the immune system is also 
utilized to hybridize with a genetic algorithm approach 
(Park et al. 2009). The swarm intelligence techniques are 
also one of the recent popular optimization approaches. 
For example, artificial bee colony by Omkar et al. (2011) 
and artificial ant colony by Yagmahan (2011). They are 
not solely used (a pure particle swarm approach by 
Mahmoodabadi et al. (2011), a multi-swarm cooperative 
particle warm approach by Zhang et al. (2011)); but also, 
hybridized with the physique based approaches (charge 
system search by Kaveh and laknejadi (2011), quantum 
based paradigm by omkar et al. (2009)). 

2. The elements of proposed optimal design 
approach with multiple objectives: objective  
functions, design constraints and nonlinear  
structural analysis approach

in this study, the design of lattice girders is optimized 
according to the design constraints based on provisions of 
API RP2A-LRFD specification (1993). Hence, whereas 
the entire weight of lattice girder f1 and joint displace-
ments f2 are minimized, its member forces or stresses f3 
are maximized (Eqns (4)–(6)). The corresponding objec-
tive functions are formulated as:

1
1

min( ( * ) ). ...( 1,.., )
m

k
k

f w l k m
=

= =∑ ; (4)

 2 min( ) ( 1,.............. ..,6 and 1,.... , )..ijf d i j n= = = ; (5)

3 max( ) or max( ). . .( 1,.., 4)ij kf f sc k= = , (6)

where the term W is computed using length of lattice 
girder member l and unit weight w. The corresponding 
unit weight values are selected from a steel profile list 
that contains 37 ready cross-sections with circular hollow. 
While dij is termed as a joint displacement correspond-
ing to the related degree of freedom i and joint j, the 
terms n and m indicate total joint and member numbers 
of lattice girder. The member forces fij are represented 
by member axial forces, shear forces, bending and tor-
sional moments computed for the member ends of lattice 
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girder. The corresponding stresses sij computed by use of 
fij are also utilized for evaluation of load- carrying capac-
ity of tubular lattice girders. Furthermore, the design 
complexity is increased thereby combining the member 
stress sij to obtain their related stress combinations (sc). 
Thus, total four extreme stress combinations are utilized 
in the design optimization: 1) (axial –  bending stresses 
(Z)) (sc1); 2) (axial – bending stresses (Y)) (sc2); 3) (axial 
+ bending stresses (Z)) (sc3); 4) (axial + bending stresses 
(Y)) (sc4).

in order to avoid a detailed description of design 
constraints, only names of the design constrains are pre-
sented using both same formulation number and same 
notation & index as in the provisions of aPi RP2a-
LRFD specification (1993). Design constraints are rep-
resented by member-strength-related inequalities. in this 
study, these inequalities are transformed into the unities 
(see these inequalities in section D, named Cylindrical 
Member Design in API RP2A-LRFD specification (1993)). 
For example, the presentation of ( *t t yf F≤ φ ) for axial 

tension and ( *b b bnf F≤ φ ) for bending is represented 

by 
*

t
Axial

t y

f
Unity

F
=
φ

 
and 

*
b

Bending
b bn

f
Unity

F
=
φ

. in 

this regard, member-strength-related unities: k
AxialUnity  

(see D.2.1-1 and D.2.2-1), k
BendingUnity  (see D.2.3-1), 

k
CombinedBendingUnity    (see D.2.3-1), k

ShearUnity  (see D.2.4-1),  

AxialCompr&BendingBuck
kUnity  (see D.3.2-1), k

TorsionUnity  

(see D.2.4-3), AxialCompr&BendingYield
kUnity  (see D.3.1-1)  

are utilized for each member of lattice girder (k = 1,.., m). 

if one of these member-strength-related unities exceeds 
a fixed value “1” at any load step, then nonlinear struc-
tural analysis is terminated. The corresponding values 
of member forces to this load step is used to deter-
mine the load-carrying capacity of current lattice girder 
since the computing procedure of nonlinear structural 
analysis method is performed out by iteratively trac-
ing an equilibrium path that contains the incremen-
tal values of load and displacements (see the details 
of computing procedure in the following section 2.1).

2.1. Computing procedure of nonlinear structural 
analysis approach, named arc-length method and  
its verification
Ready software named ANSYS (2012) is employed to 
perform the computing procedures of arc-length method 
(see the governing equation in Eqn (15) and Chapter 
15.3.6. arc-length method in ANSYS (2012) help for a 
further consideration):

{ } { } ( ){ } { } { }T a a nr
i i n i i iK u F F F R  ∆ − ∆λ = λ + λ − = −  . (7)

In order to validate the results obtained by ANSYS, a 
frame system which was used by Simo (1986) (Fig. 1a)  
is utilized. While BEAM3-element from the ANSYS 
library of elements is used to represent the member of 
frame system, a basic command list governed arc-length 
method are written in a file with an extension named 
“mac”. The important parameter values of these com-
mands are taken as: F for convergence label, 0.0001 for 
convergence tolerance (see command CNVTOL), 400 
for load step (see command NSUBST), 40 for maximum 
arc-length multiplier and 0.004 for minimum arc-length 

Fig. 1. A verification frame (a), its deformed shapes (c–d) and load factor-displacement graph (e)
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multiplier (see command aRClEN). Considering the 
post-buckling graph (Fig. 1e) it is observed that the load 
factor, displacement value set (1.09 and – ) corresponding 
to the limit point obtained Simo (1986) is a good agree-
ment with the set (1.08819, 1.40875) from ANSYS (see 
deformations of this frame in Figs 1b–1d). It is noted that 
the member forces of this frame indicated the response to 
the external static load are utilized to compute the load 
factor. in this regard, the member force that is a main 
determinative factor for the load- carrying capacity of lat-
tice girder is employed as an objective function in this 
study. Thus, the maximum values of member forces or 
stresses are utilized to assess the load-carrying capacity 
of lattice girders.

3. Optimum design of tubular lattice girders

in this study, Nsgaii, computing procedure of which is 
coded in MATLAB, is improved by a simple but effi-
cient implementation of a neural network. a pseudo 
code defined the computing steps of improved NSGAII 
( ImpNSGAII) are presented in Figure 2 in conjunction 
with its toolbox names, each of which contains related 
code scripts. Before the pseudo code is described, some 
details about the design of tubular lattice girder and imple-
mentation of neural network are given in sub-sections.

3.1. Design of tubular lattice girder
In order to enhance the flexibility of NSGAII for the 
generation of optimal designations, an automatic lattice 
girder generator is included into design stage. Thus, it is 
possible to automatically generate the lattice girder with 
various framing configurations in order to increase its 
load-carrying capacity. a conceptual lattice girder model 
is presented in Figure 3.

in this study, this conceptual lattice girder model is 
generated using size, topology and shape related design 
variables. in this regard, the cross-sectional properties, 
which are assigned to girder members from a steel profile 
database with 37 ready cross-sections with circular hol-
low, are used to represent the size-related design variables 
(D1, D2, D3 and D4, used to represent the top chord, 
bottom chord, vertical and brace members, respectively). 
Hence, the upper and lower limits of size-related design 
variables ParUDV and ParLDV are 37 and 1. The division 
number ParDN used to divide the length of span into small 
ones is utilized to represent topology-related design vari-
ables. Their upper and lower limits are represented by 
the parameters ParDNU and ParDNL respectively. in order 
to obtain an appropriate geometrical configuration of the 
lattice girder, its two heights, H1 (for first longitudinal 
member) and H2 (for middle longitudinal member) are 
symmetrically adjusted. Hence, the shape-related design 
variables ParH1 and ParH2 are determined according to 
two intervals, upper and lower limits of which are rep-
resented by the parameters ParH1U, ParH1L, ParH2U and 
ParH2L, respectively. 

The conceptual lattice girder model generated by 
use of size, shape and topology related design variables 
mentioned above is utilized in automatically preparation 
of an input file for ANSYS. Following the execution of 
the input file in batch mode, the response computation 
and constraint evaluations are automatically carried out 
thereby interacting with ANSYS (see Section 2.1 for 
some basic commands and the help of ANSYS for a 
further investigation). This full integrated programming 
unit in turn provides the values of objective functions 
(Eqns (4)–(6)) for optimization-related computations. It 
is noted that checking process is terminated once any of 
design constraints based on the provisions of aPi RP2a-
LRFD (1993) specification is violated at any incremental 
stage of nonlinear structural analysis (see RouTiNE 1 in  
Fig. 2 for computing procedure of nonlinear structural 
analysis). Therefore, the proposed design optimization 
algorithm with multi-objective called impNsgaii does 
not requires any penalization process for inclusion of 
unfeasible designations into the solution space. 

3.2. Implementation of neural network
In the design process of a neural network, firstly an input 
and output data must be defined. Then, a neural network 
is created to be configured and trained. A building block 
for neural network may contain a number of neuron. 
in the training process, related network parameters are 
correspondingly adjusted considering the input and out-
put data (see help of MATLAB). In this study, a radial 
basis neural network is utilized for its network archi-
tecture that is consisted of two layers, a hidden radial 
basis layer and output linear layer of neurons. although 
a general radial basis neural network is defined depend-
ing on the previously assigned input and output data, in 
this study, the input data (see ALLinput in Fig. 2) is only 
pre-assigned. The output data (see ALLoutput in Fig. 2) 
is obtained in the end of each execution (see “Neural 
Network implementation Number (ParNNiN) in Fig. 2). 
The matrix ALLoutput contains “Spread” and “Average 
Distance” values. Thus, the network architecture (see 
command “Newrb” in help of MATLAB) is easily cre-
ated. Then, a new input data is obtained in the end of 
an adaptive and training based simulation process (see  
command “Sim” in help of MATLAB) depending on 
ALLoutput. The new input data is obtained thereby 
improving the spread and average distance values in 
associated with ParNNiN. 

3.3. Description of computing steps of ImpNSGAII
The execution of impNsgaii governed by the parameter 
(ParNNiN)” is carried out two levels: whereas optimization-
related parameters (generation Number (Pargen), Popula-
tion size (ParPops) Mutation Rate (ParMutR), Crossover 
Rate (ParCrosR), Crossover Fraction (ParCrosFrac), Migra-
tion interval (ParMigIn), Migration Fraction (ParMigFrac),  
selection Rate (ParselR)) are adjusted in first level thereby 
utilizing the radial basis neural network implementation, 
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Fig. 2. A pseudo code for NSGA II in conjunction with its toolbox names

Fig. 3. A conceptual lattice girder model with various geometrical configurations
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the application of these parameters to the optimization 
procedure of Nsgaii is performed in the second level. at 
ParNNiN = 1 in the first level, the user-defined initial val-
ues are assigned to the optimization-related parameters, 
then these values are collected in a matrix “ALLinput” 
along with output values “average distance” and “spread” 
collected in a matrix “ALLoutput” that is resulted in exe-
cution of Nsgaii algorithm. ALLinput obtained by the 
implementation of neural network by use of ALLinput 
and ALLoutput is re-assigned to the related parameters 
of Nsgaii. 

According to the pseudo code, firstly, fitness func-
tions f1, f2 and f3 (see ROUTINE1 defined by FitnessFunc-
tion in Fig. 2) are computed by using the first individual of 
the population (x0) and the upper-lower values of design 
variables (lb and ub) (Eqns (8)–(10)). Although the maxi-
mum number of design variables (number OfVariables) 
are limited into 8 (Eqns (8)  –(10)), fitness values are com-
puted by use of some numbers located in each individuals 
depending on ParDN. The fundamental parameter values 
and genetic operator names are defined by making use 
of a structure field name named as option. Then, the first 
toolbox named as Gamultiobj is executed using these 
parameters. In this toolbox, firstly constraints and param-
eters defined in option are checked against the violation 
of their pre-defined values. Then, the computational 

procedure of Nsgaii’s algorithm begins by an execu-
tion of the toolbox gamultiobjsolve which calls two 
toolboxes named GamultiobjMakeState and stepgamul-
tiobj. in fact, an apart of GamultiobjMakeState named  
RouTiNE2 is used to constitute the toolbox named 
stepgamultiobj. The toolbox named gamultiobjsolve calls 
GamultiobjMakeState in order to create the first initial 
population using options.CreationFcn, compute fitness 
functions (fcnvectorizer) and rank them (rankAndDis-
tance). also, the execution of evolutionary genetic 
operators named selection, mutation and crossover is  
carried out in the toolbox named GamultiobjMakeState 
(indicated by ROUTINE2 in Fig. 2). NSGAII’s toolbox 
is equipped with rich features allowing the output to both 
plot and save. The desired output and plots are executed 
in two toolboxes named gadsplot and gaoutput. The main 
generation that is limited by the parameter options.Gen-
erations begins to run (see gamultiobjConverged for a 
further information about the other termination options); 
then, the toolbox named stepgamultiobj is employed to 
execute three evolutionary operators, selection, muta-
tion and crossover which are defined by ROUTINE 1. 
after that, the migration process is activated; then, the 
desired output is both saved and plotted by gadsplot and 
gaoutput:
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4. Discussion of results

in order to evaluate the computing performance of imp-
Nsgaii, a benchmark design example with 17 mem-
bers and a lattice girder with various length and loading 
conditions are devised. The computational efficiency of 
ImpNSGAII is confirmed by comparing its optimal des-
ignations with those obtained by both Nsgaii and the 
other approaches represented in literature. 

in order to compare the computing performances of 
impNsgaii and Nsgaii, two quality measuring metrics, 
named “spread” and “average distance” are utilized (see 
the further details about these metrics in Deb (2001)). 
Thus, after computing the average of these quality indica-
tors obtained by independent 50 executions, consistency 

of these results are checked through a statistical analy-
sis in a certain level of confidence in order to determine 
about whether any difference in computing performance 
of impNsgaii and Nsgaii exists. it is noted that lower 
values of spread and average distance indicates about 
both a higher approximated Pareto front form and higher 
homogeneous distribution among random solutions. 

The computing procedures of statistical analysis are 
performed in MATLAB. The spread and average distance 
values obtained at the end of each execution are stored. 
Then, the average values of these spread and average dis-
tance values are checked about whether to exhibit a nor-
mal distribution thereby employing the lillie test. if those 
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values do not show a normal distribution, a kruskal-wal-
lis test method (see function “kruskalwallis” in MAT-
LAB Statistical Toolbox) is utilized to compare those 
average spread and average distance values. Further-
more, in order to accomplish a more explicit comparison 
among them, a comparison of pairs is made using a post 
hoc 5% hsd-test (also known as Tukey-Kramer test) (see 
function “multicompare” in MATLAB Statistical Tool-
box). Basically, this function returns a matrix of pair wise 
comparison results with information about which pairs of 
distributions are significantly different.

4.1. A benchmark design example: a tubular lattice 
girder with 17 members
The design of this planar structure with 17 members, which 
has a elasticity module of 30000 ksi (206842.718 N/mm2)  
and yielding point 50 ksi (344.737 N/mm2) (Fig. 4), was 
optimized by Lee and Geem (2004), Khot and Berke 
(1984) and Li et al. (2007). it is noted that the opti-
mal design of the design example with 17 members is 
obtained by checking their member strengths according 
to API RP2A-LRFD (1993) although optimal designs 

presented in literature are obtained according to pre-
determined stress and joint displacement values. The 
design variables of continuous type were assigned con-
sidering cross-sectional areas varied from a minimum 
value of 0.1 in2. While the joint displacement limitation 
is taken as 2.00 in., maximum stress values are limited 
to 50 ksi. The planar truss, members of which were rep-
resented by use of 17 independent design variables, was 
imposed by a single joint load of 100 kipf (444.822 kN) 
at joint 9. 

The proposed design algorithms are performed to 
optimize the design of this lattice girder considering both 
joint displacement and member stress values as described 
in literature. in the end of executions both impNsgaii 
and Nsgaii, total 50 different spread and average dis-
tance values are obtained. Considering these quality 
measuring quantity value, the statistical test is performed 
to assess their computing performances. The correspond-
ing statistical significance values to the quality measur-
ing quantities are presented for both impNsgaii and 
Nsgaii along with their maximum, minimum and aver-
age values (Table 1). Furthermore, the outputs obtained 
by MATLAB are visualized for a further examination of 
statistical test results (Figs 5a–5c).

According to the values of statistical significance 
(P < 0.05), there is a considerably difference among the 
computing performances of impNsgaii and Nsgaii. 
it is clear that computing performance of impNsgaii is 
higher than Nsgaii taking into account of lower aver-
age spread (0.0121) and average distance values (0.0767) 
(Table 1).

Table 1. a statistical assessment results of spread and average distances values for design example 1

Average Distance statistical 
Significance

spread statistical 
SignificanceMax. Min. aver. Max. Min. aver.

Truss with 
17 mem.

Nsgaii 0.1649 0.0058 0.0850
0.00131

0.0185 0.0014 0.0126
0.00303

impNsgaii 0.1673 0.0002 0.0767 0.0189 0.0032 0.0121

Fig. 4. Geometry of design example 1 with 17 members 

Fig. 5. MATLAB outputs (a–c) visualized for the statistical assessment results of spread (Table 1)
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Table 2. Variation in optimization-related parameters of both impNsgaii and Nsgaii corresponding to minimum spread and 
average distance values (Table 1)

ParNNiN (impNsgaii)
Names of genetic Parameters 1 2 3 4 5 6 7 8 9 10
options.genarations 30 11 44 28 16 45 59 31 74 77
options.Populationsize 38 46 8 38 9 12 16 4 10 28
options.MutationFcn
{@mutationuniform.} 0.8960 0.8757 0.2225 0.6978 0.4471 0.7479 0.6727 0.3128 0.8306 0.3297
options.CrossoverFcn
{@crossoverheuristic.} 0.7728 0.7510 0.6831 0.4964 0.3561 0.1266 0.3588 0.9005 0.9670 0.9128
options.CrossoverFraction 0.6670 0.4433 0.9855 0.7299 0.9047 0.8160 0.8192 0.3661 0.8856 0.3499
options.MigrationInterval 5 2 5 4 2 3 3 4 3 2
options.MigrationFraction 0.5662 0.1014 0.4209 0.2410 0.4374 0.6718 0.8514 0.5268 0.6158 0.5024
options.SelectionFcn
{@selectiontournament.} 0.7800 0.4720 0.6222 0.1867 0.7613 0.8765 0.7294 0.8687 0.3587 0.7418

ParNNiN = 1 (Nsgaii)
Names of genetic Parameters
options.genarations 100
options.Populationsize 50
options.MutationFcn
{@mutationuniform.} 0.5

options.CrossoverFcn
{@crossoverheuristic.} 0.5

options.CrossoverFraction 0.5
options.MigrationInterval 5
options.MigrationFraction 0.5
options.SelectionFcn
{@selectiontournament.} 0.5

The form of Pareto fronts of impNsgaii obtained 
by use optimization-related parameters corresponding to 
minimum spread (0.0032) and average distance (0.0002) 
values is also presented along with Nsgaii’ s (Table 1 
and Figs 6a–6d). 

The search mechanism of impNsgaii is based 
on an adaptation of the evolutionary search by use of 
continuously changing evolutionary environment. This 
adaptation is carried out by adaptively adjustment of 
optimization-related parameters by a radial basis neural 
network. Thus, this self-adaptive nature of impNsgaii 
gives an opportunity to move the evolutionary search to 
promising regions of complex solution space. The vari-
ation in optimization-related parameters of impNsgaii 
corresponding to minimum spread (0.0032) and average 
distance (0.0002) values is presented in Table 2. a sta-
tistical data indicated the load step numbers is also tabu-
lated in Table 3.

Taking into account Figure 6a, several extreme des-
ignations denoted by Des1, Des2, Des3, Des4 and Des5 

Table 3. statistical data indicated load step numbers 
corresponding to termination of nonlinear structural analysis 
(design example 1)

impNsgaii Nsgaii
Max. Min. aver. Max. Min. aver.

Truss with  
17 Members 3 2 2 3 2 2

are listed to present the values of size-related design vari-
ables (Table 4) including their corresponding deformed 
configurations according to load steps performed by 
arc-length method (Figs 7a–7e). Some statistical values 
for load steps that define the load step numbers corre-
sponding to termination of arc-length method due to the 
provisions of API RP2A-LRFD specification (1993) are 
also tabulated in Table 4. In order to verify the satisfied 
design constraint values, the variation in the values of 
each design constraints are schematized in Figures 8–11. 

in order to investigate the load-carrying capacity 
of optimal designations, the total load value (100 kipf 
imposed on joint no 9) is represented by a flat surface in 
the Figure 6d. In this regard, considering the Figure 6d, 
it is obvious that the maximum member force values are 
higher than the total load value, 100 kipf. This observation 
points out that the configurations of lattice girder with 17 
members have a higher load-carrying capacity. according 
to the values of their objective functions listed in Table 4, 
the proposed design approach achieves to obtain a lower 
weight value (1539.907 lb (698.503 kg)) compared to the 
other studies in literature (2580.81 lb (1170.635 kg)) by 
Lee and Geem (2004), 2581.89 lb (1171.148 kg) by Khot 
and Berke (1984), 2581.94 lb (1171.148 kg) by Li et al. 
(2007)). it is also presented that the designation with the 
highest load-carrying capacity indicated by maximum 
member force value (1240.472) is resulted with a highest 
weight value (9847.947 lb (4466.953 kg)). Furthermore, 
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Fig. 7. Deformed shapes according to load steps obtained for Des1 (a), Des2 (b), Des3 (c), Des4 (d), Des5 (e) (Table 3)

Fig. 6. True Pareto front (a), Pareto fronts and random solutions for ImpNSGAII (b) and NSGAII (c) obtained by use of stress 
combinations, and true Pareto front obtained by use of member forces corresponding to minimum spread and average values 
(Table1) (design example 1)

although it is well known that a decrease in the weight 
of steel structure increases the joint displacement values, 
it is displayed that an increase in the weight values (from 
1539.907 lb (698.490 kg) to 6386.020 lb (2896.649 kg) 
can cause to a decrease in the joint displacement values 
(from 1.4992 in (37.896 mm) to 1.999 in (50.774 mm)). 
Therefore, the use of a multi-objective optimization 
approach increases the correctness degree in the evalu-
ation of optimal designation by preventing this dilemma.

it is mentioned that the joint displacements have 
to be constrained to an upper value due to correctly 

executing the mathematical model of linear struc-
tural analysis method for the computation of structural 
responses. This assumption may in some degree accepta-
ble in order to properly keep the framing geometry of lat-
tice girder for laying the other structural elements. in this 
regard, it is also demonstrated that the use of an available 
design specification provides an increase in generation 
of promising optimal designations since constraining the 
user-defined design criteria (member stress, etc.) to its 
upper limits unnecessarily causes an exclusion of poten-
tial designations from the current feasible designation set. 
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Table 4. Some of extreme values obtained by considering all random designations (Fig. 6a)

Size-related Design Variables
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Entire Weight Joint Displacement 
Maximum Member Force  

and stress Com. load step Number

Des1 (MW) 1539.907 lb (698.490 kg) 1.492 in (37.896 mm) 239.958 and 29.83 ksi  
(205.670 N/mm2) 2

Des2 (MJD) 6386.020 lb (2896.649 kg) 1.999 in (50.774 mm) 1239.191 and 47.89 ksi 
(330.189N/mm2) 3

Des3 (MEF) 9847.947 lb (4466.953 kg) 1.513 in (38.430 mm) 1240.472 and 36.80 ksi 
(253.727 N/mm2) 3

Des4 (MS1) 8392.790 lb (3806.905 kg) 1.748 in (44.419 mm) 210.437 and 50.36 ksi  
(347.219 kN/mm2) 3

Des5 (MS2) 7684.263 lb (3485.523 kg) 1.908 in (48.463 mm) 1239.290 and 49.96 ksi 
(344.462 N/mm2) 3

Lee (2004) 2580.81 lb (1170.635 kg) N/a N/a N/a
Khot (1984) 2581.89 lb (1171.125 kg) N/a N/a N/a
li (2007) 2581.94 lb (1171.148 kg) N/a N/a N/a

MW: Minimum Weight, MJD: Maximum Joint Displacement, MEF: Maximum Member Force
MS1: Maximum stress great than the predefined stress-related constraint (50 ksi) (if predefined displacement-related constraint (2 in) is only 

used)
MS2: Possible maximum stress less than the predefined stress-related constraint(50 ksi) (if both predefined displacement (2 in) and stress-related 

constraints (50 ksi) are simultaneously used)
a1: PIPST (Steel Profile with Standard Tubular Cross-sectional)
a2: PIPEST (Extra Strong Steel Profile with Standard Tubular Cross-sectional)
a3: PIPEEST (Double-Extra Strong Steel Profile with Standard Tubular Cross-sectional)
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Fig. 8. Variation in unity values obtained for Des1 (1a–1e), Des2 (2a–2e) and Des3 (3a–3e) (Table 4)
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Fig. 9. Variation in maximum stress values obtained by use of stress combinations for Des1 (1f–1i), Des2 (2f–2i) and Des3 
(3f–3i) (Table 4)

For example, a designation denoted by Des4 in Table 4 
is obtained by constraining only the joint displacements 
to an upper value 2.00 in.; although its maximum stress 
value 50.36 ksi exceed its upper value 50 ksi, it achieves 
to satisfy the design constraints described according to 
the provisions of API RP2A-LRFD specification (1993). 
Furthermore, a designation denoted by Des5, maximum 
stress value of which is almost equal 50 ksi, is also 
included to illustrate the usage of an available specifica-
tion to be more realistic approach (Table 4). It is noted 
that the load-carrying capacity 210.437 obtained by Des4 
is lower than 1239.290 obtained by Des5 (see Table 4). 
Therefore, constraining the member stresses to the their 
upper values causes to a decrease in the number of 

feasible designations since the designations satisfied the 
provisions of API RP2A-LRFD specification (1993) are 
automatically excluded from the feasible designation set.

although it is highlighted that the usage of a design 
specification leads an increase in feasible design, the 
other preliminary reason is related with choosing the 
design variables from a ready steel profile set with vari-
ous cross-sectional properties. The design variables of 
continuous type are generally utilized to represent the 
cross-sectional areas of lattice girder member and com-
pute the structural response by use a linear structural 
analysis method ignoring the other important cross- 
sectional properties (torsional constant, elastic and plastic 
section modules, etc.). Thus, the entire weight of lattice 
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Fig. 10. Variation in unity values obtained for Des4 (1a–1e), Des5 (2a–2e) (Table 4)
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Fig. 11. Variation in maximum stress values obtained by use of stress combinations for Des4 (1f–1i), Des5 (2f–2i) (Table 4)
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Table 5. Design input data of a lattice girder with three different span and loading conditions

Cases
lattice girder 1 lattice girder 2 lattice girder 3

Design Input Data
Member Material, Geometry and Loading Conditions Including Limit of Joint Displacement 

Total load Value 70 kipf (311.375 kN) 140 kipf (622.751 kN) 150 kipf (667.233 kN)
length of span 393.70 in. (10 m) 393.70 in. (10 m) 787.40 in. (20 m)
Max. Joint Disp. 3.94 in (100 mm)
Yielding Point Val. 36 ksi (248.211 N/mm2)
Elasticity Module 29732 ksi (205 kN/ mm2)

size-related design Variables
ParND   4   4   4
ParUDV 37 37 37
ParLDV   1   1   1

Topology-related design Variables
ParUDN 15 20 40
ParLDN   5   5 10

shape-related design Variables
ParUH2 35.433 (0.9 m) 47.244 (1.2 m) 59.055 (1.5 m)
ParLH2 23.622 (0.6 m) 23.622 (0.6 m) 31.496 (0.8 m)
ParUH1 23.622 (0.6 m) 23.622 (0.6 m) 31.496 (0.8 m)
ParLH1 3.937 (0.1 m) 3.937 (0.1 m) 7.874 (0.2 m)

Table 6. A statistical assessment results of spread and average distances values for design example 2
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lattgir1
Nsgaii 0.2990 0.1185 0.2065

0.0003
0.1998 0.0146 0.1053

0.0006
impNsgaii 0.2883 0.1119 0.1758 0.1876 0.0047 0.1040

lattgir2
Nsgaii 0.3980 0.1263 0.2850

0.0041
0.2833 0.0364 0.1764

0.0052
impNsgaii 0.3531 0.0688 0.2175 0.2572 0.0263 0.1523

lattgir3
Nsgaii 0.1961 0.0763 0.1429

0.0025
0.0904 0.0165 0.0560

0.0032
impNsgaii 0.1807 0.0536 0.1290 0.0945 0.0017 0.0401

girder is correspondingly increased. However, taking into 
account of these important cross-sectional properties pro-
vides an increase in the load-carrying capacity of lattice 
girder leading to a reduction in its entire weight. This 
observation is easily justified by considering the maxi-
mum cross-sectional areas of optimal designations cor-
responding to the minimum weight, 4.03 in2 obtained by 
ImpNSGAII and 15.821 in2, 15.930 in2 and 15.896 in2  
obtained by Lee and Geem (2004), Khot and Berke 
(1984) and Li and et al. (2007). 

4.2. Design example 2: a general tubular lattice 
girder with varying size, topology and shape
Considering the previous design example, it is shown that 
ImpNSGAII is an efficient optimization tool to explore 
the optimal designations by exploiting the evolution-
ary material gathered from a re-structured evolutionary 

environment. in this design example, both impNsgaii 
and Nsgaii are utilized to optimize a lattice girder 
with three different span lengths and total load values 
(Table 5). it is noted that the total load value imposed 
to the lattice girder is equally distributed to upper joints 
obtained by dividing the length of span (ls) by a divi-
sion number (ParDN) in order to determine joint load val-
ues. Thus, total three cases with an increasing complexity 
are devised to investigate both the computing capacity of 
impNsgaii and the variation in load-carrying capacity 
of lattice girder.

Assessing the values of statistical significance val-
ues (P < 0.005), the computing performance of impNs-
gaii and Nsgaii are shown to be different with each 
other (Table 6). It is obvious that computing performance 
of impNsgaii is higher than Nsgaii’s considering the 
lower average values of spread (0.1758, 0.2175 and 
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Table 7. Variation in optimization-related parameters of both impNsgaii and Nsgaii corresponding to minimum spread and 
average distance values (Table 6)

ParNNiN (impNsgaii)
Names of genetic Parameters 1 2 3 4 5 6 7 8 9 10
options.genarations 19 8 11 2 6 4 5 23 24 11
options.Populationsize 47 26 4 22 40 43 12 18 29 27
options.MutationFcn
{@mutationuniform.} 0.1286 0.1640 0.2267 0.1056 0.4271 0.6158 0.4131 0.1101 0.2324 0.2934
options.CrossoverFcn
{@crossoverheuristic.} 0.5631 0.5960 0.9042 0.9523 0.9015 0.3474 0.8937 0.7724 0.3496 0.7372
options.CrossoverFraction 0.4647 0.2603 0.1509 0.7672 0.1800 0.5081 0.9353 0.3858 0.8130 0.1871
options.MigrationInterval 2 3 4 4 4 2 2 2 3 3
options.MigrationFraction 0.1606 0.6823 0.5330 0.8600 0.5739 0.2375 0.4844 0.1307 0.7244 0.1817
options.SelectionFcn
{@selectiontournament.} 0.7863 0.7407 0.9862 0.3958 0.5444 0.1221 0.3343 0.9326 0.6413 0.3648

ParNNiN=1 (Nsgaii)
Names of genetic Parameters
options.genarations 100
options.Populationsize 50
options.MutationFcn
{@mutationuniform.} 0.5
options.CrossoverFcn
{@crossoverheuristic.} 0.5
options.CrossoverFraction 0.5
options.MigrationInterval 5
options.MigrationFraction 0.5
options.SelectionFcn
{@selectiontournament.} 0.5

0.1290) and average distance values (0.1040, 0.1523 and 
0.0401) for lattice girders (1–3) (Table 6).

The forms of total three true Pareto fronts are visu-
alized in Figures 12a–14a including the Pareto fronts of 
ImpNSGAII (Figs 12b–14b) and NSGAII (Figs 12c–14c).  
it is noted that the Pareto fronts of impNsgaii and 
Nsgaii are obtained by use of the optimization-related 
parameters corresponding to the lowest spread (0.1119, 
0.0688 and 0.0536) and average distance values (0.0047, 
0.0364 and 0.0017) for the lattice girder (1–3). Due to 
the self-adaptive search mechanism of impNsgaii, the 

Fig. 12. (b) and NSGAII (c) corresponding to minimum 
spread and average values (Table 6) (design example 2, lattice 
girder 1)

Fig. 12. True Pareto front (a), Pareto fronts and random 
solutions obtained by impNsgaii 
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Fig. 13. True Pareto front (a), Pareto fronts and random 
solutions obtained by impNsgaii (b) and Nsgaii  
(c) corresponding to minimum spread and average values 
(Table 6) (design example 2, lattice girder 2)

optimization-related parameters are adaptively adjusted 
according to parameter ParNNiN. Therefore, the variation 
in the optimization-related parameters is listed in Table 7. 

in order to investigate the load-carrying capacity of 
lattice girders (1–3), the total load values represented by 
flat surfaces are included into Figures 12–14 regarding 
to Pareto front forms. in this regard, the feasible desig-
nations, maximum member forces of which are higher  
than the total load values (70 kipf (311.375 kN),  
140 kipf (622.751 kN) and 150 kipf (667.33 kN) for 
the lattice girders (1–3)), are easily seen. Considering  
Figures 12–14, the increasing complexity arisen from 
an elevation in both span lengths and loading conditions 
causes to a decrease in load-carrying capacity of lattice 
girders. Thus, the number of feasible designations is cor-
respondingly decreased along with their load-carrying 

Fig. 14. True Pareto front (a), Pareto fronts and random 
solutions obtained by impNsgaii (b) and Nsgaii  
(c) corresponding to minimum spread and average values 
(Table 6) (design example 2, lattice girder 3)

capacities (Figs 12a–14a). Several extreme designations 
borrowed from Figures 12a–14a are tabulated to present 
the values of size, shape and topology-related design 
variables (Table 8). In order to make a further investiga-
tion for load-carrying capacities of lattice girders (1–3), 
the size, shape and topology-related design variables 
of feasible designations are listed in Table 9. Thus, it 
is observed that some designations defined as feasible 
designation in Table 9 are identical to ones tabulated in  
Table 8. 

 Taking into account of the designations presented in 
Table 9, it is achieved to keep the load-carrying capacity 
in a higher level in spite of an increase in span length and 
total load values. For example, whereas the maximum 
member force of lattice girder optimized using the design 
conditions of lattice girder 1 is 255.086, it is 232.224 for 
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Table 8. Some of extreme values obtained by considering all random designations (Figs 9a–11a)
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MW: Minimum Weight, MJD: Maximum Joint Displacement, MEF: Maximum Member Force
a1: PIPST (Steel Profile with Standard Tubular Cross-sectional)
a2: PIPEST (Extra Strong Steel Profile with Standard Tubular Cross-sectional)
a3: PIPEEST (Double-Extra Strong Steel Profile with Standard Tubular Cross-sectional)
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Table 9. Some of extreme values corresponding to feasible designations with higher maximum member forces than total load 
value (Figs 9a–11a)

lattice girder 1 lattice girder 2 lattice girder 3
Des1 
(MW)

Des2 
(MJD)

Des3 
(MEF)

Des1 
(MW)

Des2 
(MJD)

Des3 
(MEF)

Des1 
(MW)

Des2 
(MJD)

Des3 
(MEF)

ParDN 6 10 10 8 10 10 12 26 10
ParH2 22.737 4.047 6.117 15.769 10.113 23.208 25.420 24.398 10.393
ParH1 32.489 24.413 35.095 40.122 27.435 45.197 58.205 44.795 58.005
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the lattice girder 3 that has a more severe design com-
plexity. a statistical data indicated the load step numbers 
is also tabulated in Table 10.

Concluding remarks

The design of geometrically nonlinear tubular lattice 
girders is optimized by use a multi-objective optimiza-
tion approach named Nsgaii thereby checking their 
member strengths according to the design constraints 

Table 10. statistical data indicated load step numbers 
corresponding to termination of nonlinear structural analysis 
(design example 2)

impNsgaii Nsgaii
Max Min Mean Max Min Mean

lattgir1 2 2 2 2 2 2
lattgir2 2 2 2 2 2 2
lattgir3 2 2 2 2 2 2
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based on the provisions of API RP2A-LRFD specifi-
cation. The incremental and iterative based arc-length 
method used for modeling the geometrical nonlinearity is 
utilized to compute the member forces of lattice girder. in 
order increase the flexibility of NSGAII, an automatic lat-
tice girder generator is included into the design procedure 
of NSGAII. Furthermore, the evolutionary search capac-
ity of Nsgaii is also increased by an implementation of 
radial-basis neural network to its optimization procedure. 
Consequently, the following results are drawn from the 
application of proposed design approach for the optimal 
design of lattice girders: 

 – The proposed optimization procedure named imp-
Nsgaii does not require any penalizing process 
utilized in case of any violation of the design con-
straints. Thus, it is possible to obtain a designation 
which is not feasible due to its load-carrying capac-
ity being lower than the total load value imposed to 
the lattice girder. 

 – impNsgaii is capable of generating a lattice girder 
configuration with higher load-carrying capacity 
with respect to the total load value.

 – The computing performance of impNsgaii is 
higher than both Nsgaii and the other studies in 
literature ensuring lower weight and joint displace-
ment values and higher load-carrying capacity.

 – The use of a multi-objective optimization approach 
increases the correctness degree in evaluating the 
optimality quality of designations obtained.

 – Utilizing an available design specification along  
with the discrete design variables assigned from a 
ready steel profile set leads to an increase in the num-
ber of feasible designations compared to the usage 
of a user-defined design criteria (member stress and 
etc.) and design variables of continuous type.
Thus, the proposed optimal design approach devel-

oped by considering the geometrically nonlinear behav-
ior of lattice girders is an efficient optimization tool in 
order to obtain an optimal design of lattice girders. in 
the second part of this study, joint strength-related design 
constraints will be also included into the current design 
constraints. Thus, it is possible to investigate the variation 
in the optimality quality of designations.
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