Single-Electron Transmetalation: An Enabling Technology for Secondary Alkylboron Cross-Coupling

David N. Primer, Idris Karakaya, John C. Tellis, and Gary A. Molander*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
*To whom correspondence should be addressed. E-mail: gmolandr@sas.upenn.edu

Supplementary Material

General considerations S2
Procedure for synthesis of secondary alkyltrifluoroborates S2
Synthesis of photocatalyst 1 S2-S4
Selected reaction optimization studies S4-S5
General procedure for photoredox cross-coupling reactions S6-S7
Compound characterization data S8-S18
Spectral data S19-S77

General considerations

All reactions were carried out under an inert atmosphere of nitrogen or argon unless otherwise noted. Dioxane (99.9%, extra dry) was used as received. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was used as received. $\mathrm{IrCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$, and NiCl_{2}-dme were purchased from commercial sources. All other reagents were purchased commercially and used as received. Photoredox reactions were irradiated with two or three standard 26 W compact fluorescent light bulbs. Melting points $\left({ }^{\circ} \mathrm{C}\right)$ are uncorrected. NMR spectra were recorded on a 500 or 400 MHz spectrometer. ${ }^{19} \mathrm{~F}$ NMR chemical shifts were referenced to external $\mathrm{CFCl}_{3}(0.0 \mathrm{ppm}) .{ }^{11} \mathrm{~B}$ NMR spectra were obtained on a spectrometer equipped with the appropriate decoupling accessories. Data are presented as follows: chemical shift (ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, sept $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constant $J(\mathrm{~Hz})$ and integration.

Synthesis of Secondary Alkyltrifluoroborates:

Most potassium organotrifluoroborates were purchased commercially. In cases where the desired potassium organotrifluoroborate was unavailable, the corresponding boronic acid derivative was converted to the trifluoroborate by the following procedure.

General Procedure for conversion of boronic acid to trifluoroborate:

To a solution of boronic acid derivative in acetone or $\mathrm{MeOH}(0.1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ was added saturated aq $\mathrm{KHF}_{2}(4.5 \mathrm{M})$ dropwise over 30 min . The resulting suspension was concentrated under reduced pressure. $\mathrm{H}_{2} \mathrm{O}$ was azeotropically removed by suspension in toluene ($100-150 \mathrm{~mL}$) followed by rotary evaporation. The remaining solid was dried under high vacuum and then suspended in hot acetone ($3 \times 100 \mathrm{~mL}$) and filtered. The filtrate was concentrated to a minimal volume ($5-20 \mathrm{~mL}$) and hexane or $\mathrm{Et}_{2} \mathrm{O}(\sim 200 \mathrm{~mL})$ were added to yield a white precipitate. The precipitate was isolated by filtration, washing with hexanes $(\sim 30 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 30 \mathrm{~mL})$, to afford the desired secondary alkyltrifluoroborate.

Synthesis of photocatalyst 4

The synthesis of photocatalyst $\mathbf{4}$ has been documented in literature reports and fully included in our previous report on benzylic cross-couplings, but to aid the practicing chemist, all details are included here as well. ${ }^{1}$ The procedures below have proven the most reliable in our experience.

To a large vial equipped with a magnetic stir bar was added $\mathbf{S} 1(3.3 \mathrm{~g}, 15 \mathrm{mmol})$ [Note: the boronic acid of $\mathbf{S 1}$ serves equally well under these conditions], $\mathbf{S 2}$ ($2.26 \mathrm{~g}, 10 \mathrm{mmol}$), anhyd $\mathrm{K}_{2} \mathrm{CO}_{3}$ (6.9 $\mathrm{g}, 50 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.16 \mathrm{~g}, 1 \mathrm{mmol})$. The vial was sealed tightly with a Teflon-coated septum cap and evacuated and purged with N_{2} three times. The contents were dissolved in THF

[^0](32 mL) and degassed $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$, then stirred at $80^{\circ} \mathrm{C}$ for 24 h . After cooling to rt, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography, eluting with $5 \% \mathrm{EtOAc}$ in hexanes to afford ligand $\mathbf{S 3}$ as a white solid ($2.54 \mathrm{~g}, 98 \%$) . $\mathrm{mp}=55-58^{\circ} \mathrm{C}$.
A small amount of PPh_{3} was usually observed after column chromatography ($<5 \mathrm{~mol} \%$), which did not interfere with subsequent reactions.

To a 20 mL round-bottom flask equipped with a magnetic stir bar was added ligand $\mathbf{S 3}$ (428 mg , 1.65 mmol) and IrCl_{3} hydrate ($224 \mathrm{mg}, 0.75 \mathrm{mmol}$). The flask was equipped with a cold water condenser and evacuated and purged with N_{2} five times. The contents were suspended in rigorously degassed ethoxyethanol $(9 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and then heated with stirring to 120 ${ }^{\circ} \mathrm{C}$ for 20 h , during which time a yellow precipitate was observed to form. After cooling to rt , the precipitate was collected by vacuum filtration. The filter cake was washed copiously with $\mathrm{H}_{2} \mathrm{O}$ $(\sim 75 \mathrm{~mL})$ and hexanes ($\sim 30 \mathrm{~mL}$) to afford iridium μ-Cl-dimer $\mathbf{S 4}$ as a fine yellow powder (84%). $\mathrm{mp}>250^{\circ} \mathrm{C}$. Characterization data for this compound matched that reported in the literature. ${ }^{2}$

To a 15 mL round-bottom flask equipped with a magnetic stir bar was added iridium dimer $\mathbf{S} \mathbf{4}$ ($130 \mathrm{mg}, 0.087 \mathrm{mmol}$) and 2,2'-bipyridine ($32 \mathrm{mg}, 0.21 \mathrm{mmol}$). The flask was attached to a reflux condenser and the contents were placed under an inert atmosphere by three evacuation/purge cycles. The reaction components were dissolved in degassed ethylene glycol (6 mL) and heated with stirring at $150^{\circ} \mathrm{C}$ for 24 h . Upon cooling to rt , the reaction mixture was diluted with deionized $\mathrm{H}_{2} \mathrm{O}$ and transferred to a separatory funnel. The aqueous phase was washed three times with hexanes, then drained into an Erlenmeyer flask and heated to $\sim 85^{\circ} \mathrm{C}$ for $5-15 \mathrm{~min}$ to remove

[^1]residual hexanes. Upon cooling to rt , an aq soln of $\mathrm{NH}_{4} \mathrm{PF}_{6}(10 \mathrm{~mL}, 0.1 \mathrm{~g} / \mathrm{mL})$ was added, resulting in the formation of a fine yellow precipitate that was isolated by vacuum filtration and then washing with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and hexanes $(15 \mathrm{~mL})$. The solid was dried under high vacuum to remove residual $\mathrm{H}_{2} \mathrm{O}$ and then dissolved in acetone and recrystallized by vapor diffusion with hexane to yield 1 as large yellow crystals ($172 \mathrm{mg}, 88 \%$). $\mathrm{mp}=199-202^{\circ} \mathrm{C}$. Characterization data for this compound matched that reported in the literature. ${ }^{3}$

Selected reaction optimization studies

Procedure for reaction screening at 0.10 or 0.05 mmol scale: To a reaction vial equipped with a Teflon coated magnetic stir bar in a glovebox was added a soln of nickel source and ligand (1:1) dissolved in THF. The solvent was removed in vacuo under an inert atmosphere. Additives were weighed into the vials (liquid additives were added after the stock solution). A stock solution of aryl bromide, secondary alkyltrifluoroborate, Ir catalyst 1, and internal standard were then added by syringe and stirred for $16-24 \mathrm{~h}$ in front of a single 26 W CFL. Aliquots were then taken, diluted, and analyzed by HPLC or GC/MS. Reactions were compared within sets by crude product to internal standard (P/IS) ratios.

Figure S1: Comparison of Solvents
Conditions: $\mathbf{0 . 1} \mathbf{~ m m o l ~ A r - B r , ~} 1.5$ equiv $\mathrm{RBF}_{3} \mathrm{~K}, 2.0$ \% $\operatorname{Ir}\left(\mathbf{d F C F}_{3} \mathrm{ppy}\right)_{2}$ bpy $\mathrm{PF}_{6}, \mathbf{1 0 . 0} \% \mathrm{Ni} /$ dtbbpy, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($\mathbf{1 . 0}$ equiv), $\mathbf{0 . 0 5} \mathrm{M}$ in solvent

[^2]

Figure S2: Nickel Sources
Conditions: $\mathbf{0 . 1} \mathbf{~ m m o l ~ A r - B r , ~} \mathbf{1 . 5}$ equiv RBF3K, $\mathbf{2 . 0 \%}$
$\operatorname{Ir}\left(\mathbf{d F C F}_{3} p p y\right)_{2} b p y \mathrm{PF}_{6}, \mathbf{1 0 . 0} \% \mathrm{Ni}$ source/dtbbpy, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv), $\mathbf{0 . 0 5} \mathrm{M}$ in dioxane

Fig. S3: Nickel Loadings
Conditions: 0.1 mmol Ar-Br, 1.5 equiv RBF3K, 2.0% $\operatorname{Ir}\left(\text { dFCF }_{3} \text { ppy }\right)_{2}$ bpy PF_{6}, 1.5 equiv $\mathrm{K}_{2} \mathrm{CO}_{3} \mathbf{0 . 0 5} \mathrm{M}$ in dioxane

Figure S4: Comparison of Carbonate Bases and Cesium Salts
Conditions: $0.1 \mathbf{m m o l} \mathbf{~ A r - B r , ~} \mathbf{1 . 5}$ equiv RBF3K, $\mathbf{2 . 5 \%}$
$\operatorname{Ir}\left(\mathrm{dFCF}_{3} p p y\right)_{2}$ bpy $\mathrm{PF}_{6}, 5.0 \% \mathrm{Ni} /$ dtbbpy, 1.5 equiv additive, 0.05 M in dioxane

General procedure for photoredox cross-coupling reactions

To a long, thin ($\sim 20 \mathrm{~mL}$) borosilicate glass vial equipped with a Teflon-coated magnetic stir bar was added $4,4^{\prime}$-di-tert-butyl-2, ${ }^{\prime}$ '-bipyridine ($6.7 \mathrm{mg}, 0.025 \mathrm{mmol}$) and $\mathrm{NiCl}_{2} \cdot{ }^{\bullet} \mathrm{dme}(5.5 \mathrm{mg}, 0.025$ mmol) and 1.0 mL THF. The vial was capped and the resulting suspension was heated briefly with a heat gun until the nickel and ligand were fully solubilized, yielding a pale green solution. The solvent was then removed under vacuum to give a fine coating of the ligated nickel complex (pale evergreen in color). Once dry, aryl bromide ($0.5 \mathrm{mmol}, 1$ equiv) (liquid aryl bromides were added with solvent), secondary alkyltrifluoroborate (0.75 mmol , 1.5 equiv), $\operatorname{Ir}\left[\mathrm{dFCF}_{3} p p y\right]_{2}(\mathrm{bpy}) \mathrm{PF}_{6} \mathbf{1}$ $(12.8 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(243 \mathrm{mg}, 0.75 \mathrm{mmol})$ were added in succession. The vial was then capped and purged and evacuated four times. Under inert atmosphere, dioxane (10 mL) was introduced. The vial containing all the reagents was further sealed with parafilm and stirred for 24 hours approximately 4 cm away from two 26 W fluorescent light bulbs. A fan was blown across the reaction setup to maintain an ambient temperature around $24^{\circ} \mathrm{C}$. After $16-24 \mathrm{~h}$, an aliquot was taken and analyzed on a GC/MS to monitor reaction completion and confirm formation of a single regioisomer (when applicable). Then, the crude reaction mixture was filtered through an approximately $2 \mathrm{~cm} \times 2 \mathrm{~cm}$ cylindrical plug of Celite, washing with EtOAc ($10-20 \mathrm{~mL}$). The resulting solution was concentrated and the residue was purified by column chromatography on silica gel, eluting with EtOAc and hexanes, to obtain products in pure form.

Fig S5: Photoredox cross-coupling reaction set-up (0.5 mmol scale)

Gram scale reaction: To a $\sim 125 \mathrm{~mL}$ long thin-walled vacuum flask equipped with a Teflon-coated magnetic stir bar was added $\mathrm{NiCl}_{2} \bullet$ dme ($20 \mathrm{mg}, 0.093 \mathrm{mmol}, 0.02$ equiv) and 4,4 'di-tert-butyl-$2,2^{\prime}$-bipyridine ($25 \mathrm{mg}, 0.093,0.02$ equiv) and 5.0 mL of THF. The vial was capped and the resulting suspension was heated briefly with a heat gun until the nickel and ligand were fully solubilized, yielding a pale green solution. The solvent was then removed under vacuum to give a fine coating of the ligated nickel complex (pale evergreen in color). Once dry, methyl 4bromobenzoate ($1.000 \mathrm{~g}, 4.65 \mathrm{mmol}, 1.00$ equiv), potassium cyclohexyltrifluoroborate (1.325 g , $6.98 \mathrm{mmol}, 1.50$ equiv), $\mathrm{Ir}^{2}\left[\mathrm{dFCF}_{3} \text { ppy }\right]_{2}$ (bpy) $\mathrm{PF}_{6} 1\left(47.0 \mathrm{mg}, 0.047 \mathrm{mmol}, 0.01\right.$ equiv), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($2.267 \mathrm{~g}, 6.98 \mathrm{mmol}, 1.50$ equiv) was added. The vial was then capped with a rubber septum and purged and evacuated four times. Under inert atmosphere, dioxane ($95 \mathrm{~mL}, 0.05 \mathrm{M}$) was introduced. The vial containing all the reagents was further sealed with parafilm and stirred vigorously (a small vortex should be observed toward the top of the reaction mixture) for 36 h approximately 4 cm away from three 26 W fluorescent light bulbs. A fan was blown across the reaction setup to maintain an ambient temperature around $24{ }^{\circ} \mathrm{C}$. After completion, the crude reaction mixture was filtered through an approximately $4 \mathrm{~cm} \times 2 \mathrm{~cm}$ cylindrical plug of Celite, washing with EtOAc (60 mL). The resulting solution was concentrated and the residue was purified by column chromatography on silica gel, eluting with EtOAc and hexanes, to obtain product in pure form.

Fig S6: Gram scale photoredox cross-coupling reaction set-up (4.65 mmol)

Compound Characterization Data

13

Methyl 4-cyclohexylbenzoate (13): obtained as a white crystalline solid ($76 \mathrm{mg}, 70 \%$), on gram (4.65 mmol) scale ($740 \mathrm{mg}, 73 \%$), $\mathrm{mp}=38-40^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, 2.58-2.54 (m, 1H), 1.87 (m, 4H), 1.77 (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 1 \mathrm{H})$ ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 167.1,153.4,129.6,127.7,126.8,51.8,44.6,34.0,26.7,26.0$ IR: $v=2926,2852,1720,1436,1276,1180,1112,1101,1019,762,706 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})$ 241.1204, found 241.1214

14
Methyl 4-cyclopentylbenzoate (14): obtained as a white amorphous solid ($94 \mathrm{mg}, 92 \%$), $\mathrm{mp}=$ $32-33{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.04(\mathrm{q}, J=8.5 \mathrm{H}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.59(\mathrm{~m}, 6 \mathrm{H})$ - a small amount of methyl 4bromobenzoate ($<5 \%$) was inseparable from the starting material after column chromatography. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 167.1,152.1,129.5,127.6,127.0,51.8,45.9,34.4,25.5$
Characterization data matched that reported in the literature. ${ }^{4}$

15

Methyl 4-cyclobutylbenzoate (15): obtained as a pale yellow oil ($57 \mathrm{mg}, 60 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.96(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5,2 \mathrm{H}) 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~m}$, $1 \mathrm{H}), 2.39-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 167.3,151.8,129.7,127.8,126.4,52.1,40.4,29.7,18.4$
IR: $v=2951,1721,1609,1435,1276,1108,1020,768,646 \mathrm{~cm}^{-1}$
HRMS (ESI) m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 191.1072, found 191.1065

[^3]

17
Methyl trans-4-(2-methylcyclohexyl)benzoate (17): obtained as a colorless oil ($110 \mathrm{mg}, 95 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.95(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0,2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.16-$
$2.11(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.64$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 167.1,152.4,129.6,127.7,127.5,52.5,51.8,37.4,35.5,35.2$, 26.7, 26.5, 20.6

IR: $v=2924,2853,1722,1609,1435,1276,1180,1112,1102,772,708 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 233.1542$, found 233.1539
GCMS analysis of the reaction mixture after 16 hours confirms formation of a single regioisomer.

18
Methyl trans-4-(2-methylcyclopentyl)benzoate (18): obtained as a pale yellow oil (99 mg , 91\%)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.96(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0,2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.50-$ $2.44(\mathrm{~m}, 1 \mathrm{H}) 2.10-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.91$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 125.8 \mathrm{MHz}\right): \delta 167.3,151.4,129.8,128.0,127.7,54.7,52.1,43.4,35.4,34.9$, 24.1, 18.6

IR: $v=2951,2868,1723,1610,1435,1278,1179,1112,770 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 219.1385$, found 219.1394
GCMS analysis of the reaction mixture after 16 hours confirms presence of a single regioisomer

19
Methyl 4-(sec-butyl)benzoate (19): obtained as a colorless oil (73 mg, 76\%)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.96(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}$, $2 \mathrm{H}), 1.24(\mathrm{~m}, 3 \mathrm{H}), 0.81(\mathrm{~m}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 167.3,153.3,129.8,127.9,127.2,52.1,41.9,31.1,21.7,12.3$ GCMS analysis of the reaction mixture after 24 hours confirms presence of a single regioisomer.

Characterization data matched that reported in the literature. ${ }^{5}$

Methyl 4-isopropylbenzoate (20): obtained as a colorless oil (68 mg, 76\%)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, 2.96 (sept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.26 (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 167.3,153.3,129.8,127.9,127.2,52.1,41.9,31.1,21.7,12.3 \mathrm{p}$ Characterization data matched that reported in the literature. ${ }^{6}$

[^4]

21
tert-Butyl 4-(4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate (21): obtained as a white amorphous solid ($147 \mathrm{mg}, 92 \%$), $\mathrm{mp}=118-120^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{bs}, 2 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 167.1,154.9,151.2,130.0,128.4,127.0,79.7,52.1,44.3$ (br), 42.9, 33.0, 28.6, 24.9

IR: $v=2845,1701,1421,1365,1268,1229,1155,1126,1012,770 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 342.1681$, found 342.1685
GC analysis of the crude mixture after 24 h confirms the formation of a single regioisomer.

22

Methyl 4-(tetrahydro-2H-pyran-4-yl)benzoate (22): obtained as a white crystalline solid (91 $\mathrm{mg}, 83 \%$), $\mathrm{mp}=74-75^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{t}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 4 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 167.2,151.2,130.0,128.4,126.9,68.3,52.2,41.8,33.7$
IR: $v=2964,2932,2862,1718,1609,1440,1275,1109,1098,1017,764 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}) 221.1178$, found 221.1179

$(\pm)-23$

Methyl 4-((1R*,2R*,3R*,5R*)-3,6,6-trimethylbicyclo[3.1.1]heptan-2-yl)benzoate (23): obtained as a yellow oil ($80 \mathrm{mg}, 59 \%$)
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 3.10-3.06 (m, 1H), 2.53-2.51 (m, 1H), 2.45-2.42 (m, 1H), 2.09-2.04 (m, 2H), 1.92-1.87 (m, 2H), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 167.1,154.8,129.6,128.3,127.5,51.8,47.9,45.6,44.9,41.7$, 39.1, 37.2, 34.8, 28.4, 22.9, 20.8

IR: $v=2950,2904,1723,1610,1434,1278,1112,1019,770,707 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 273.1855$, found 273.1850

24
4-Cyclopentylbenzonitrile (24): obtained as a colorless oil ($81 \mathrm{mg}, 95 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{q}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13}{ }^{3}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 152.5,132.2,128.1,119.4,109.6,46.1,34.6,25.7$
IR: $v=2955,2869,2227,1607,1504,1451,1416,1178,830,657 \mathrm{~cm}^{-1}$
HRMS: (ESI) m/z calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}(\mathrm{M}+)$ 171.1048, found 171.1044

25

1-Cyclopentyl-4-methoxybenzene (25): obtained as a colorless oil ($63 \mathrm{mg}, 72 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.00-2.93 (m, 1H), 2.10-2.04 (m, 2H), 1.83-1.55 (m, 6H)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 157.8,138.7,128.1,113.8,55.4,45.3,34.9,25.6$
IR: $v=2950,2866,1612,1513,1463,1245,1178,1033,826 \mathrm{~cm}^{-1}$
HRMS: (ESI) m/z calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}(\mathrm{M}+)$ 176.1201, found 176.1199

26
1-Chloro-2-cyclopentylbenzene (26): obtained as a yellow oil ($80 \mathrm{mg}, 89 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.36-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{q}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.16-2.07 (m, 2H), 1.83-1.72 (m, 4H), 1.59-1.57 (m, 2H)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 143.8,134.3,129.5,127.2,127.0,126.9,42.3,33.3,25.6$ IR: $v=2951,2868,1475,1442,1355,1035,744 \mathrm{~cm}^{-1}$
HRMS: (ESI) m/z calc. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Cl}(\mathrm{M}+)$ 180.0706, found 180.0711

27
4-Cyclopentyl-1,1'-biphenyl (27): obtained as a pale yellow semi-solid (98 mg, 88\%)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.38 (m, 3H) $3.11(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H}) 1.80-1.70(\mathrm{~m}$, 4H)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 145.9,141.4,138.9,129.0,127.8,127.23,127.22,127.1745 .9$, 34.9, 25.8

IR: $v=2952,2869,1598,1486,831,764,735,698 \mathrm{~cm}^{-1}$
HRMS: (ESI) m/z calc. for $\mathrm{C}_{17} \mathrm{H}_{18}(\mathrm{M}+) 222.1409$, found 222.1406

28
3-Chloro-5-cyclopentylpyridine (28): obtained as a pale yellow oil ($80 \mathrm{mg}, 88 \%$)
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.39(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.52(\mathrm{dd}$, $J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H})$, 1.59-1.52 (m, 2H)
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 146.9,146.0,143.0,134.0,131.7,42.8,34.2,25.3$
IR: $v=2954,2868,2361,1580,1440,1420,1295,1233,1107,1022,935,879,709 \mathrm{~cm}^{-1}$
HRMS: (ESI) m/z calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NCl}(\mathrm{M}+\mathrm{H})$ 182.0737, found 182.0740

29
7-Cyclopentyl-1-methyl-1H-indazole (28): obtained as a dark yellow oil ($80 \mathrm{mg}, 80 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$): $\delta 140.2,140.0,131.7,126.3,123.5,116.8,106.4,43.6,35.5$, 33.6, 25.6

IR: $v=2950,2868,1606,1508,1447,1272,1237,982,783,740 \mathrm{~cm}^{-1}$
HRMS: (ESI) m/z calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})$ 201.1392, found 201.1390

30
trans-2-Methyl-4-(2-methylcyclopentyl)pyridine (30): obtained as a yellow oil ($62 \mathrm{mg}, 71 \%$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.36(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 158.3,155.1,149.1,122.6,120.2,53.9,42.9,34.9,24.6,24.1$, 18.6

IR: $v=2934,2837,1698,1611,1512,1247,1173,1096,1034,818 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}(\mathrm{M}+\mathrm{H})$ 176.1439, found 176.1439

31
trans- N -(4-(2-Methylcyclopentyl)phenyl)acetamide (31): obtained as a white crystalline solid ($90 \mathrm{mg}, 83 \%$), $\mathrm{mp}=118-124^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.37(\mathrm{q}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 3H)
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 168.6,141.7,135.8,128.0,120.3,54.2,43.2,35.5,34.8,24.6$, 23.9, 18.7

IR: $v=3246,3123,2946,2865,1661,1610,1557,1512,1413,1369,1327,826 \mathrm{~cm}^{-1}$
HRMS (ESI) m / z calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H}) 218.1545$, found 218.1545

32
trans-3-Methoxy-5-(2-methylcyclopentyl)pyridine (32): obtained as a yellow oil ($61 \mathrm{mg}, \mathbf{6 4 \%}$) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.12(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.01(\mathrm{~m}, 1 \mathrm{H}), 3.84$ (s, 3H), 2.43-2.38 (m, 1H), 2.09-2.07 (m, 1H), 2.00-1.98 (m, 1H), 1.94-1.89 (m, 1H), 1.76-1.69 $(\mathrm{m}, 3 \mathrm{H}), 1.31-1.29(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 155.8,142.2,141.6,134.8,119.6,55.6,51.7,43.2,35.3,34.8$, 24.0, 18.5

IR: $v=2953,2868,1587,1454,1427,1318,1296,1176,1164,1049,867,714 \mathrm{~cm}^{-1}$
HRMS: (ESI) m/z calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})$ 192.1388, found 192.1386

33
tert-Butyl trans-5-(2-methylcyclopentyl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (33):
obtained as a yellow oil ($115 \mathrm{mg}, 77 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.81-$
$1.72(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 148.2,147.4,145.5,135.4,127.4,126.7,123.1,104.5,83.9$, 52.0, 43.6, 35.7, 34.8, 28.3, 23.9, 18.4

IR: $v=2951,2868,1757,1728,1532,1472,1398,1356,1318,1253,1145,1092,730 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$ 301.1916, found 301.1905

trans-2-(1H-Imidazol-1-yl)-5-(2-methylcyclopentyl)pyrimidine (34): obtained as a dark yellow oil (79 mg, 69\%)
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~s}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.34$ (m, 1H), $0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 159.4,157.6,136.0,135.6,130.3,116.4,48.9,43.0,34.7,34.4$, 23.6, 18.2

IR: $v=3127,2947,2866,1568,1477,1450,1314,1097,931,795,754,651 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{4}(\mathrm{M}+\mathrm{H}) 229.1453$, found 229.1453

35
trans-2-Fluoro-4-(2-methylcyclopentyl)pyridine (35): obtained as a pale yellow oil (70 mg, 78\%)
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.09(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 2.49-$ $2.43(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 1 \mathrm{H}), 0.94$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 164.1(\mathrm{~d}, J=237.7 \mathrm{~Hz}), 160.9(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 147.2(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 108.0(\mathrm{~d}, J=36.6 \mathrm{~Hz}), 53.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 42.9,34.7,34.6$, 23.9, 18.3

IR: $v=2953,2869,1610,1563,1482,1414,1273,996,974,832 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NF}(\mathrm{M}+\mathrm{H})$ 180.1189, found 180.1189

36
trans-5-(2-Methylcyclohexyl)picolinonitrile (36): Reaction was run on 0.40 mmol scale;
obtained as a pale yellow oil ($68 \mathrm{mg}, 85 \%$)
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}$, $4 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 151.3,146.5,135.6,131.6,128.5,117.6,50.1,37.5,35.5,35.2$, 26.6, 26.4, 20.7

IR: $v=2925,2854,2234,1566,1470,1024,845,652,632 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})$ 201.1392, found 201.1385

37
trans-1-(2-Methylcyclohexyl)-4-(trifluoromethyl)benzene (37): obtained as a colorless oil (90 mg, 74\%)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.12(\mathrm{~m}$, $1 \mathrm{H}), 1.82-177(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 151.1,128.2(\mathrm{q}, J=32.1 \mathrm{~Hz}), 128.0,125.3(\mathrm{q}, J=3.9 \mathrm{~Hz})$,
$124.6(\mathrm{q}, J=271.6 \mathrm{~Hz}), 52.6,37.7,35.7,35.6,26.9,26.7,20.8$
${ }^{19}$ F NMR ($\left.\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): ~ \delta-62.2$
IR: $v=2928,2858,1618,1325,1163,1124,1069,1020,830 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3}(\mathrm{M}+)$ 242.1282, found 242.1283

38
trans-4-(2-Methylcyclohexyl)phenyl trifluoromethanesulfonate (38): obtained as a colorless oil ($120 \mathrm{mg}, 75 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.09(\mathrm{~m}$, $1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 147.5,147.3,129.0,120.9,118.7(\mathrm{q}, J=320.7 \mathrm{~Hz}), 51.8,37.6$, 35.5, 35.4, 26.7, 26.4, 20.5
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): ~ \delta-72.9$
IR: $v=3339,2970,2929,1426,1379,1213,1142,1131,952,883,817 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{~S}$ (M-H) 321.0772, found 321.0787

39
trans-Methyl 3-(2-methylcyclohexyl)benzoate (39): obtained as a colorless oil (100 mg, 86\%) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): ~ \delta 7.87-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.15(\mathrm{~m}$, $1 \mathrm{H}), 2.13-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 167.3,147.1,132.2,130.0,128.5,128.2,127.0,52.3,51.9$, 37.5, 35.6, 35.5, 26.8, 26.5, 20.6

IR: $v=2923,2852,1723,1445,1432,1285,1196,1107,1086,752,698 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H}) 233.1542$, found 233.1553

40
trans-2-(2-Methylcyclohexyl)benzo[b]thiophene (40): obtained as a colorless crystal (73 mg, 63\%)
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24$ (m, $2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.36$ (m, 4H), 1.15-1.13 (m, 1H), 0.83 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 152.1,140.1,139.0,124.1,123.4,122.8,122.4,119.8,48.4$, 39.3, 36.8, 35.7, 26.9, 26.5, 21.0

IR: $v=2923,2851,1445,1443,1309,1128,819,744,655,636 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~S}(\mathrm{M}+\mathrm{H}) 231.1207$, found 231.1208

41
trans-1-(4-(2-Methylcyclohexyl)phenyl)ethan-1-one (41): obtained as a colorless oil (89 mg, 82\%)
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.78-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.14$ (m, $1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.14-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right): \delta 198.4,147.4,137.1,132.4,128.4,127.1,126.0,52.3,37.5$, 35.6, 35.5, 26.8, 26.6, 26.5, 20.6

IR: $v=2922,2853,1685,1600,1444,1359,1266,1229,1186,799,698 \mathrm{~cm}^{-1}$
HRMS (ESI) m/z calc. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}(\mathrm{M}+\mathrm{H}) 217.1592$, found 217.1586
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-cyclohexylbenzoate (13)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$) methyl 4-cyclohexylbenzoate (13)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-cyclopentylbenzoate (14)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of methyl 4-cyclopentylbenzoate (14)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-cyclobutybenzoate (15)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of methyl 4-cyclobutylbenzoate (15)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-(2-methylcyclohexyl)benzoate (17)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of methyl 4-(2-methylcyclohexyl)benzoate (17)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-(2-methylcyclopentyl)benzoate (18)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$) spectrum of methyl 4-(2-methylcyclopentyl)benzoate (18)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-(sec-butyl)benzoate (19)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$) spectrum of methyl 4-(sec-butyl)benzoate (19)

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-isopropylbenzoate (20)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of methyl 4-isopropylbenzoate (20)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of tert-butyl 4-(4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate (21)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right.$) spectrum of tert-butyl 4-(4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate (21)

M思

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-(tetrahydro-2H-pyran-4-yl)benzoate (22)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$) spectrum of methyl 4-(tetrahydro-2H-pyran-4-yl)benzoate (22)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of methyl 4-((3,6,6-trimethylbicyclo[3.1.1]heptan-2-yl)benzoate (23)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of methyl 4-((3,6,6-trimethylbicyclo[3.1.1]heptan-2-yl)benzoate (23)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of 4-cyclopentylbenzonitrile (24)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of 4-cyclopentylbenzonitrile (24)

I

梁品 $\stackrel{9}{0}$

1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	$\mathrm{f}_{1}^{100}(\mathrm{ppm})$	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of 1-cyclopentyl-4-methoxybenzene (25)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of 1-cyclopentyl-4-methoxybenzene (25)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of 1-chloro-2-cyclopentylbenzene (26)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of 1-chloro-2-cyclopentylbenzene (26)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of 4-cyclopentyl-1,1'-biphenyl (27)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of 4-cyclopentyl-1,1'-biphenyl (27)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of 3-chloro-5-cyclopentylpyridine (28)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of 3-chloro-5-cyclopentylpyridine (28)

異登

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of 7-cyclopentyl-1-methyl-1 H -indazole (29)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of 7-cyclopentyl-1-methyl-1H-indazole (29)

要

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-2-methyl-4-(2-methylcyclopentyl)pyridine (30)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans -2-methyl-4-(2-methylcyclopentyl)pyridine (30)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans -N -(4-(2-methylcyclopentyl)phenyl)acetamide (31)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans -N -(4-(2-methylcyclopentyl)phenyl)acetamide (31)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-3-methoxy-5-(2-methylcyclopentyl)pyridine (32)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-3-methoxy-5-(2-methylcyclopentyl)pyridine (32)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-tert-butyl trans-5-(2-methylcyclopentyl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (33)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right.$) spectrum of (\pm)-tert-butyl trans-5-(2-methylcyclopentyl)-1H-pyrrolo[2,3-b]pyridine-1-carboxylate (33)

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}$) spectrum of (\pm)-trans-2-(1H-Imidazol-1-yl)-5-(2-methylcyclopentyl)pyrimidine (34)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-2-(1H-Imidazol-1-yl)-5-(2-methylcyclopentyl)pyrimidine (34)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-2-fluoro-4-(2-methylcyclopentyl)pyridine (35)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of $(\pm$)-trans-2-fluoro-4-(2-methylcyclopentyl)pyridine (35)

${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}, 470.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-2-fluoro-4-(2-methylcyclopentyl)pyridine (35)

$\stackrel{N}{2}$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-5-(2-methylcyclopentyl)picolinonitrile (36)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-5-(2-methylcyclopentyl)picolinonitrile (36)

 1 章数

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-1-(2-methylcyclohexyl)-4-(trifluoromethyl)benzene (37)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-1-(2-methylcyclohexyl)-4-(trifluoromethyl)benzene (37)

${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-1-(2-methylcyclohexyl)-4-(trifluoromethyl)benzene (37)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-4-(2-methylcyclohexyl)phenyl trifluoromethanesulfonate (38)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-4-(2-methylcyclohexyl)phenyl trifluoromethanesulfonate (38)

${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}, 470.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-4-(2-methylcyclohexyl)phenyl trifluoromethanesulfonate (38)

离

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-methyl 3-(2-methylcyclohexyl)benzoate (39)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-methyl 3-(2-methylcyclohexyl)benzoate (39)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-2-(2-Methylcyclohexyl)benzo[b]thiophene (40)

1

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-2-(2-Methylcyclohexyl)benzo[b]thiophene (40)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ spectrum of（ \pm ）－trans－1－（4－（2－Methylcyclohexyl）phenyl）ethan－1－one（41）

令梁年年

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125.8 \mathrm{MHz}\right)$ spectrum of (\pm)-trans-1-(4-(2-Methylcyclohexyl)phenyl)ethan-1-one (41)

[^0]: ${ }^{1}$ Tellis, J. C.; Primer, D. N.; Molander, G. A. Science, 2014, 345, 433.

[^1]: ${ }^{2}$ Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.

[^2]: ${ }^{3}$ Hanss, D.; Freys, J. C.; Bernardinelli, G.; Wenger, O. S. Eur. J. Inorg. Chem. 2009, 2009, 4850.

[^3]: ${ }^{4}$ Liu, Z.; Dong, N.; Xu, M.; Sun, Z.; Tu, T. J. Org. Chem. 2013, 78, 7436.

[^4]: ${ }^{5}$ Phapale, V. B.; Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem. A Eur. J. 2009, 15, 12681.
 ${ }^{6}$ Zhu, Y.; Yan, H.; Lu, L.; Liu, D.; Rong, G.; Mao, J. J. Org. Chem. 2013, 78, 9898.

