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better quality degree of its optimal designations compared to algorithms proposed here and described in literature.
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1. Introduction

The steel structures consist of hot-rolled steel profiles with
different cross-sectional properties. The optimum design of
steel structures is considered as a constrained optimization
problem. Modern optimization methods used in the design
of steel structure as well as in a number of engineering
design problems are inspired by natural phenomenon, such
as survival of the fittest, immune system, swarm intelligence,
simulating annealing, and ant colony (Saka [1]). These meth-
ods explore the problem space utilizing the global or local
search-based algorithms. Moreover, it is also possible both
to incorporate a local search algorithm into a global search,
namely, hybridization of algorithms (memetic algorithms)
and to run them in parallel (Moscato [2], Radcliffe and Surry
[3], Cantú-Paz [4]).

The powerful member of these algorithms is evolutionary
algorithms (EAs). EAs mimic the process of natural evo-
lution. The evolutionary computation is achieved by either
simultaneously examining and manipulating a set of possible
candidate individuals or using a special individual along with
its neighbors in the generation of new individuals.

Genetic algorithm (GA), a member of EAs, is a
population-based global search technique based on the
Darwinian evolutionary theory (Holland [5], Goldberg [6]).
The preliminary approach of GAs is SGA (see a pseudocode
in Algorithm 1). SGA guides the evolutionary search by
a single population Pi. The size of Pi is denoted by SP.
Individuals are encoded in a string scheme associated with
one of the codes of the binary, integer, and real. In the
evolutionary search, the promising individuals Pi−sel and
Pi+1−sel are chosen from the population by a selection
operation (roulette wheel, stochastic universal sampling,
ranking, truncation, etc.). Then, the individuals chosen are
applied to recombination and mutation operation (one or
multipoint crossover and mutation, uniform crossover, etc.).
These evolutionary operations (mutation mut, crossover cr,
and selection sel) are governed by their related evolutionary
parameters Par (mutation and recombination probability
rates, selection pressure, etc.). The population Pnew evolved
by the application of these evolutionary operators is decoded.
Then, the fitness values are computed by use of this
population. The evolutionary search is executed to transmit
(migration) the individuals (emigrant and immigrants)
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SGA (Pi, NG, SP, Fi, Parsel, Parmut, Parcr)
If [Pi] = [], Initialize (Pi, SP, NDV)
for i = 1: NG
[Pdi ] = Pi
If required, [Pdi ] = Decoding (Pi)
If [Fi] = [], [Fi] = Fitness Calculation (Pdi )
[Pi−sel] = Selection(Pi, Fi, Parsel)
[Pi+1−sel] = Selection(Pi, Fi, Parsel)
[Pnew] = Pnew U Crossover(Pi−sel, Pi+1−sel, Parcr)

U Mutation(Pi−sel, Pi+1−sel, Parmut)

[Pi] = [Pnew]
end

Algorithm 1: Pseudocode for SGA.

Global optimum

Figure 1: General visualisation of the populations randomly scattered in search topography.

to the next populations until satisfying a predetermined
stopping criteria (e.g., completion of a generation number
NG).

SGA is more flexible optimization tools. Therefore, it
is possible to achieve a balance between two main genetic
features: exploration of promising locations in the search
space and exploitation of best solutions obtained. The accu-
racy of this balance has a big effect in the determination of
SGAs’ performance associating with the quality of solution,
speed of convergence and generation of feasible solutions,
and so forth. If this balance is not appropriately achieved
throughout the generations, a stagnation problem in the
progression of evolutionary search is occurred after an
equilibrium state. This equilibrium state is called immature
convergence. Figure 1 (depicted the local maxima by +’s) can
be used for highlighting the reason of immature convergence.
As seen in Figure 1, exploration of the trajectory to the global
maxima is provided only by maintaining the migration of
the populations. That is, if keeping the variations among the
populations and the diversity within populations, then the
quality of migration will increase, and so, the exploration
of the global maxima embedded in one of the subregions
will be more powerful in attributes of the geographically
nearby populations. In this regard, the task about how the
computational cost required for this balance to be minimized
leads to the emergence of new GAs.

In this study, a bipopulation-based genetic algorithm
methodology named BGAwEIS, whose crucial elements are
developed by utilizing the fundamentals of SGA, is applied
for the design optimization of truss structures. BGAwEIS
utilizes feasible solutions to collect valuable genetic heredity
from potential ancestors and to transmit it to offspring.
For this purpose, two populations are employed for the
transmission process. An intensive search of subregions of
entire solution region is provided by gradual exploration
strategy developed for BGAwEIS. Moreover, the dominance
of similar feasible solutions in next generations is prevented
by recreation of the populations at certain generation num-
bers. In order to asses the quality of optimal designations
generated by BGAwEIS, optimal design results obtained
by both SGA and existing approaches outlined in the
literature are considered. Furthermore, a multipopulation-
based genetic algorithm (MPGA) approach is proposed
to investigate the effect of usage of multiple and single
populations on the quality degree of optimal designations.
For this purpose, an optimization tool called GEATbx coded
in MATLAB is utilized to compute the evolutionary processes
of MPGA (Pohlheim [7]).

This paper is organized as follows. The next section
presents a background concerned existing design optimiza-
tion approaches; Sections 3 and 4 contain the optimum
design problem and main elements of BGAwEIS including
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the basic principles of MPGA associated with GEATbx;
design details and examples are provided in Sections 5 and 6,
sequentially; conclusion is presented in last section following
Section 7 that summarizes the discussion of results.

2. The Review of Major Design
Optimization Approaches Used in
the Design of Steel Structures

A summary of major optimization approaches and their
applications to the design optimization of steel structures are
presented by a brief introduction. In this regard, the first part
reviews the preliminary studies. Second part evaluates the
evolutionary algorithms including their hybrid and parallel
models. In this summary, it is intended to present the most
representative works in a chronological order.

2.1. Preliminary Studies. The preliminary studies on the
design optimization of steel structures are based on gradient-
based mathematical programming techniques. Linear pro-
gramming approach was widely utilized for weight mini-
mization of truss structures, considering structural responses
under both elastic and plastic behaviors (Cornell [8]),
Bigelow and Gaylord [9]). Nonlinear programming was
usedas an alternative method to linear programming. Majid
and Elliott [10] applied nonlinear programming to optimize
the weight of a two-bay four storey frame. Afterwards,
sequential linear and quadratic programming techniques
(SLP and SQP) were widely used for the design optimiza-
tion of steel structures. Vanderplaats and Sugimoto [11]
developed a design technique “automated design synthesis”
utilizing the approaches of SLP and SQP. Automated design
synthesis method was proposed for minimizing the weight
of frames with various bays and stories under static and
seismic loadings by Karihaloo and Kanagasundaram [12],
and Gülay and Boduroğlu [13]. The optimization techniques
based on nonlinear programming were used for generation
of optimal designations for steel structures under different
loading conditions and design requirements (Lassen [14],
Wang and Grandhi [15], Salajegheh [16], Hernández [17]).

Optimality criteria method (OCM) is another chal-
lenging method. Hybridizing the nonlinear mathematical
programming with Lagrange multipliers for inclusion of
constraints forms the basis of OCM (Arora [18], Cameron
et al. [19]). Saka and Hayalioglu [20] used OCM for opti-
mization of geometrically nonlinear steel structures made
of elastoplastic material. Hayalioglu and Saka [21] proposed
OCM for design optimization of frames with nonuniform
cross-sections. Chan et al. [22, 23] carried out the weigh
minimization of three-dimensional steel structures with dis-
crete cross-sections by OCM. They devised a transformation
process for continuous and discrete design variables. Saka
[24] optimized a frame design with tapered members thereby
firstly computing the member responses under external static
loadings and combining them by Lagrange multipliers to
generate depth variables. Saka and Kameshki [25] used
OCM for design optimization of unbraced rigid frames

considering constraints imposed by sway deflections and
member stresses.

2.2. Evolutionary-Based Optimization Studies. Evolutionary
computation based on simulation of natural evolutionary
is a new approach used in the design optimization of steel
structures. Due to being appropriate for both traditional
and novel computation applications in the field of structural
engineering, evolutionary approaches whose major members
are GAs by Holland [5], evolutionary programming (GP) by
Fogel et al. [26] and evolutionary strategies (ES) by Rochen-
berg [27] have been improved by new implementations,
such as hybrid and parallel searches. Therefore, research
developments on three major EAs are firstly reviewed. Then,
subsection provides an overview of recent developments
concerned the issues of parallel and hybrid implementations.

GP is managed by programs defined by point-labeled
parse trees used to describe the node and elements in
the steel structure. The most important step in GP is the
determination of the size and shape of parse trees for a design
problem (Keijzer and Bobovic [28, 29]). Cevik [30] used a
GP methodology, namely, a gene-expression programming,
for determining rotation capacity of wide flange beams.

ES uses a population of tentative design solutions and
generates the populations using several genetic operators
with self-adaptive parameters (Back and Schwefel [31, 32]).
Cai and Thierauf [33] proposed an evolutionary strategy
without self-adaptive parameters for the design optimization
of steel structures. Similar approaches were also utilized
for the design optimization, such as ES with self-adaptive
parameters for discrete and continuous design variables
(Ebenau et al. [34], Rajasekaran [35], and Baumann and Kost
[36]).

One evolutionary algorithm approach is the SGA. Due
to its flexible structure, its genetic components have been
improved. Taking into account the usage of genetic compo-
nents, the studies are grouped into two general categories.

(i) Genetic Operators with Adjustable Parameters and Rep-
resentation of Design Variables. Hajela [37] introduced a
representation technique for discrete design variables. Thus,
the lower and upper bounds of continues design variables
were used to compute the values of discrete design variables
with any determined precision. He discussed the negative
effect of higher precision values leading to a larger-length
binary representation. Adeli and Cheng [38] presented a
decoding technique in order to use binary coded strings
for continues design variables. Chen [39] discussed the
lack of proportional selection operation leading to stag-
nation problem in evolutionary search. He showed that
usage of both scaled fitness values which are computed
considering certain statistical quantities of fitness values
and crossover operator which was applied at different rates
to the same individual improved the quality degree of
optimal designations. Yang and Soh [40] pointed out that
the tournament selection method was more efficient than
the existing selection methods considering quality degree of
optimal designations. The use of graph theory for GAs is one
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of the new developments in structural optimization problem.
Wang and Tai [41] devised a graph representation for the
topology-related design variables in structural optimization
problems. Kaveh and Kalatjari [42] utilized the graph theory
for representation of the size-related design variables and
force method for structural analysis. Thus, grouping of truss
design variables according to magnitude and sign (com-
pression and tension) of stress becomes a new challenging
approach in the design optimization of steel structure (Saka
[43], Saka et al. [44], Toğan and Daloğlu [45]).

(ii) Constraint Handling for Evaluation of Fitness Values.
Camp et al. [46] devised a penalty function with several
variables for design optimization of two-dimensional steel
structures. The negative effect of this approach leading to
an inaccurate penalization was shown by Rasheed [47]. In
order to cope with this task, Rasheed [47] utilized an adaptive
approach for handling the constraints. For this purpose, a
penalty function was used to compute the penalty values
based on an adaptation of penalty coefficients with respect to
the penalty degree. Le Riche et al. [48] divided the population
into small groups and applied a penalty function with
different variable coefficients for each group. Coello [49]
used two populations for the generation of a new population
thereby comparing the penalized values. Nanakorn and
Meesomklin [50] improved the penalty function by an
adaptive procedure.

One of the alternative approaches to the penalty function
is artificial immune-inspired model (Garrett [51]). Firstly,
Yoo and Hajela [52] utilized this approach for solving design
optimization problem. They employed two populations:
one population was used to compute penalty values, while
the other one measured the hamming distance between
penalized fitness values. Coello and Cruz Cortés [53]
improved Yoo and Hajela’s technique by devising an adaptive
evolutionary mechanism against the necessity for a penalty
function.

Hybrid and Parallel Search-Based Evolutionary Algorithm
Approaches. In order to improve the flexibility and efficiency
of evolutionary algorithms, utilizing the hybrid or parallel
models of evolutionary search algorithms is one of the
important attempts.

The hybridization concept is emerged by use of local
search methods for evolutionary algorithms as a com-
plementary tool. Local search methods are proposed to
propagate the genetic information obtained throughout
evolutionary process into the next generations. One powerful
hybridization model is memetic algorithm. This biological
learning mechanism is associated with Dawkins’ notion of
a meme defined as a unit of cultural evolution (Dawkins
[54]). Two important approaches, namely, Lamarckian and
Baldwinian approaches make use of this learning mechanism
for their evolutionary processes. Whereas the structure
of chromosome and its fitness value are changed in the
Lamarckian’ approach, Baldwinian’ learning mechanism
only affects the fitness value of chromosome without any
change in its structure. In the hybridization of evolutionary

algorithms with local search method, the converging speed
to the global optima may be lower than the case of
using a pure evolutionary search algorithm without any
hybrid implementation (Ong and Keane [55]). In order to
increase the converging speed, a new memetic algorithm,
namely coevolving memetic algorithm, is developed. Its
fundamentals as well as a comprehensive review of the basic
approaches based on this algorithm are presented by Smith
[56].

The concept of parallel search is introduced to evolu-
tionary algorithms thereby employing a number of com-
puter processes with distributed or shared memories for a
global population or a divided global population into small
populations (subpopulations) (Cantú-Paz and Goldberg
[57],Cantú-Paz [58, 59]). Parallel systems not only preserve
diversity within the current populations, but also ensure
a perpetual novelty for populations to be generated in a
way of disseminating the different characteristic features
embedded in the chromosomes to next populations. Among
evolutionary algorithms the GAs are preferably chosen for
the parallel applications. The basic genetic models utilized in
parallel search are grouped into four main classes (Cantú-Paz
[4]).

(a) Master-slave GA. It uses a single population, while
master processor is employed to collect valuable genetic
information, slave processors service are responsible to com-
pute the fitness values for a certain number of individuals
(Grefenstette [60], Robbins [61] and Levine [62]).

(b) Fine grained GA or cellular GA. The larger number
of processors is assigned for fitness evaluation of subpop-
ulations. Due to the higher number of processors, one of
difficulties is encountered during the decision about how the
computer processors to be designed and arranged (Baluja
[63]).

(c) Coarse grained GA or distributed GA. It has several
similar properties of fine grained GA (migration implemen-
tation and multiple population usage) with an exception of
using smaller number of processors. The ease of designing
and arranging the computer processors makes this model
more attractive compared to cellular GA (Herrera et al.
[64]). The distributed GA is performed depending on
migration related parameters (policy, topology, frequency
etc.) (Cohoon et al. [65], Alba and Troya [66], Skolicki
and De Jong [67]). Moreover, the other important issues
for migration policy are the number and frequency of
migration, replacement of immigrants, size of populations
and migration topology (Tanese [68, 69]). The migration
related processes are directly responsible for determining
the excitation order of computer processors. Moreover, if
any computer processor waits to run the migration process
for exchanging the individuals, then this parallel search is
called as “synchronous,” otherwise “asynchronous” (Alba
and Troya [70]).

One of the basic models utilized by the distributed GA
is island model. Several distinct subpopulations are isolated
with each other, but communicated by a migration process.
Evolutionary operators are applied to each subpopulation. If
the parameter values of evolutionary operators are adjustable
for each subpopulation being important for an independent
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exploration of different region of search space, then island
model of this type is named as homogenous and nonhomo-
geneous distributed GA (Alba and Troya [70]).

(d) Hybrid GA. Distributed GA can be straightforwardly
implemented on the parallel systems consisted of a number
of computer processors providing a considerable profit to the
evolutionary search in a way of decreasing the computing
time. Therefore, by itself, distributed GA is hybridized with
existing search methods at different hierarchical levels. The
hierarchical level is determined according to the use of evo-
lutionary tools and operators for the structured population.
In the determination of any hierarchical scheme, one of the
most important steps is how the population to be structured
according to a lattice-like topology.

The cellular GA is also successfully used in the hybridiza-
tion models (Martin et al. [71]). However, the complexity
degree of cellular GA is higher than distributed GA due to the
increased size of both its subpopulations and underlying grid
system consisted of computer processors. Alba and Troya
[70] compared the cellular, distributed GAs and their hybrid
models. They showed that numeric efficiency and resistance
to scalability was increased by the distributed versions of
cellular GA. In order to improve the exploitation capability of
the cellular GA in a way of increasing the converging rate, it
was hybridized with a local search method, named as cellular
memetic algorithm. (Folino et al. [72]). Afterwards, cellular
memetic algorithm was enhanced by an implementation of
an adaptive mechanism. (Krasnogor and Smith [73]), Neri
et al. [74], Caponio et al. [75], and Quang et al. [76]).

Sakamoto and Oda [77] hybridized GAs with optimality
criteria method for topology and size optimization of truss
structures. While the topology of truss structure was evolved
through GA, optimality criteria methods determine the
cross-sectional areas of truss bars. Soh and Yang [78] devised
a GA approach that is managed by the fuzzy-logic-based
rules. This approach was applied for weight minimization of
structures and achieved to obtain more optimal designations
compared to SGA’s.

Adeli and Cheng [79] were developed a parallel GA
called “concurrent GA.” They utilized a number of computer
processors in parallel for the design optimization of truss and
frame structures. Topping and Leite [80] utilized this parallel
GA for the design optimization of a bridge, considering a
number of constraints. Adeli and Kumar [81] used a network
consisted of computer processors for optimization of large-
spaced steel structures. Sarma and Adeli [82] hybridized the
coarse grained GAs with the fuzzy logic search method, for
design optimization of three-dimensional frame structures.

Tanimura et al. [83] proposed an island model for
design optimization of truss structures taking into account
several constraints. They utilized a new penalty function
and compared their optimal designations with SGA. They
showed that their island model was more efficient than
SGA. Kicinger et al. [84] utilized the island models for
both topology and size optimization of tall buildings made
up with steel profiles. They used two migration topologies
(ring and fully-connected topology) with various migration
strategies for the design optimization of two-dimensional
frame with the bracing elements of various types. They

showed that the quality degree of optimal designations is
improved when island models were executed by using higher
number of subpopulations. Then, Kicinger and Arciszewski
[85] made use of MAs in the design optimization of same
steel structure. Examining various genetic operators and
their related parameters, they showed that the MAs were
more successful than GAs.

Kaveh and Shahrouzi [86] proposed implementing
the graph theory for MAs. Lamarckian and Baldwinian
approaches were adapted to optimize the frame brac-
ing layouts of steel frames. Moreover, the application of
these approaches is illustrated for a two-dimensional steel
frame. They compared their optimal results with SGAs
and displayed that whereas Lamarckian approach reduces
the topological variance with a more converging rate, the
better results are obtained by an incorporation of a dynamic
mutation band control to the Baldwinian approach.

Karakasis et al. [87] devised a radial basis function
network for the distributed GA and applied it to an
aerodynamic shape optimization problem. They compared
four variants of GA and concluded that their distributed
versions offer an additional advantage in the exploration
of the interconnected processor network. Then, in order to
carry out the shape optimization of same design problem,
they devised a hierarchical distributed evolutionary scheme
thereby adapting both the aerodynamic design formulation
and a navier-stoke equation solver into a radial basis unction
network (Karakasis and et al. [88]). Liakopoulos et al. [89]
utilized a grid system consisted of a number of computer
processors for performing the hybridization of hierarchical
and distributed algorithms.

3. Optimum Design Problem

In this study, the weight of steel structure is minimized by
taking the constraints of maximum allowable stresses and
displacements into account. The evolutionary operations
are operated on a population of tentative designations with
binary, integer, and real codes which contains the design
variables of discrete and continues types. Genetic operators
are carried out by use of either phenotypic or genotypic
representations of design variables. The representations of
design variables encoded in genotype level are either kept in
all levels of evolutionary computation or decoded for fitness
evaluation in phenotypic level. The fitness values of tentative
design solutions are adjusted according to the violation of
constraints. In case of constrain violation; the penalized
value is included into fitness value by a penalty function.

The weight of truss system and constraints are formu-
lated as

W =
n∑

i=1

ρ ∗ Li ∗ Ai, (1)

subject to

σi ≤ σmax i = 1, . . . ,n,

Uk ≤ Umax k = 1, . . . ,m.
(2)
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Here, W represents weight of the truss system. ρ is the
density of steel, Li and Ai are the length and cross-sectional
area of ith member, respectively; n is the total number of
members in the truss system. σi and σmax symbolize the
stress and the maximum allowable stress for ith member.
Uk is the displacement at kth degree of freedom while m is
the total degree of freedom of nodes. Umax represents the
maximum allowable displacement for kth degree of freedom.
Constraints gs and gd controls the joint displacements and
element stresses, considering the allowable displacement and
stress values. The number of constraints is determined by
smax and dmax which indicates the number of joints and
displacements to be constrained.

The violation of constraint is penalized. The penalization
process is used to obtain a penalty value. Thus, the fitness
value F is obtained by the sum of weight of the truss system
W and penalty value P. F is used in weight minimization of
truss system. The minimization process is formulated as

Min F =W + P, (3)

where the term “W” is given in (1) and P is

P = (ro ∗ t
)ϕ ∗

( n∑

i=1

gi +
m∑

k=1

gk

)
∗ f . (4)

In (4), the stress constraint is expressed as

gs =

⎧
⎪⎨
⎪⎩

σi
σmax

− 1: σi ≤ σmax

0: σmax > σi
i = 1, . . . ,n, s = 1, . . . , smax,

(5)

and displacement constraint as

gd=

⎧
⎪⎨
⎪⎩

Uk

Umax
− 1: σk≤ max

0: Umax >σk
k=1, . . . ,m, d=1,. . .,dmax.

(6)

The values of the constants in the calculation of the
penalty value P are taken as r0 = 0.50, ϕ = 2, f = 10,
and t = current generation number as given in Hasançebi and
Erbatur [90].

4. An Introduction of BGAwEIS and
Multipopulation-Based Genetic
Algorithm (MPGA)

The main features of BGAwEIS are similar to the island
models with respect to the usage of multiple populations
and static parameters in the evolutionary operators. In
order to asses the effect of multiple populations on the
quality of optimal designations, MPGA is proposed. It
is able to perform the evolutionary processes with one
processor and also capable of performing the evolutionary
operations with static parameters on multiple populations.
The fundamentals of BGAwEIS and MPGA are summarized
in the following sections.

4.1. BGAwEIS. Parallel GAs are perfect evolutionary tools
due to its flexibility structure which is adaptable to various
environmental conditions. They utilize a number of proces-
sors and populations simultaneously. Considering the ele-
vated number of interacting characteristics, it is said that par-
allel GAs have “complex mechanisms.” While using smaller
number of populations decreases this complexity, the quality
of optimal solutions drops due to insufficient exploitation of
genetic heredity. On the other hand, with increasing number
of populations the adjustment of the values of related
evolutionary parameters becomes increasingly difficult and
cause a slow down in the variation among populations. This
effect prevents the exploration of promising solution regions
(Cantú-Paz [4]). Therefore, a balance between exploitation
of genetic heredity and exploration of promising solution
regions should be achieved. For this purpose, an appropriate
number of populations must be used for transmitting of the
genetic heredity extracted from high-quality solutions. In
this regard, a new GA, namely, bipopulation-based Genetic
Algorithm with Enhanced Interval Search (BGAwEIS), is
developed. The basic features of BGAwEIS are itemized as
follows.

(i) The design constraints may increase the complexity
of the search in the solution region (Eiben and
Ruttkay [91]). The largeness of the solution region
affects the exploration efficiency of the GA. If the
feasible solutions are utilized in the exploration of
the solution region, then more promising individuals
located in some other regions may be obtained.
Therefore, BGAwEIS utilizes feasible solutions in
order to compose the genetic heredity. The valuable
genetic heredity obtained is adapted to current pop-
ulations by transmission processes called “extraction”
and “insertion-based transmission processes.”

(ii) Two populations called “outward” and “inward”
within a core population are used in transmis-
sion processes in order to investigate the unknown
subsolution regions and use the genetic informa-
tion obtained from previously visited candidates
to explore better candidates. Transmission process
is achieved by regenerating a population through
migration among the feasible solutions taking into
account of gradual exploration strategy developed
for utilizing the promising subsolution regions of
the entire solution region. Because, the exploration
capacity is increased by dividing the entire solu-
tion region into subsolution regions. As a result,
promising feasible solutions are used to explore more
promising solution regions.

(iii) The similar feasible solutions which may be domi-
nated in the search or feasible solutions obtained may
be not enough to explore the entire solution region.
Therefore, the core population is recreated at certain
generation numbers.

(iv) The evolutionary processes are governed by four
parameters depending on the number of design
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BGAwEIS (SubPopNum = 1, SubPopIndNum = SP, SSR,NDV,NG, NGGES, NSBS, Parmut,
Parcr, Parsel)
Initialize (Pi, SupPopNum, SupPopIndNum)
[Pcor] = Pi
[Pardcor] = Pi
If required, [Pardcor] = Decoding (Pcor),
[Fcor, FeasPool] = Fitness Calculation (Pardcor)
for i = 1: NG
[Pinw, Poutw] = Extraction based transmission(Fcor, Pcor, FeasPool)
[Finw, Foutw, FeasPool] = Fitness Calculation(Pinw, Poutw)
[Pcor] = Insertion based transmission(Finw, Poutw, Pinw, Poutw, FeasPool)
[Pcor, NSBS] = Re-creation Population(Finw, Foutw, Pinw, Poutw, SSR, NSBS, FeasPool)
[Pcor] = SGA(Pcor, NG = 1, SP, Fcor, Parsel, Parmut, Parcr)
[Pardcor] = Pcor

If required, [Pardcor] = Decoding (Pcor),
[Fcor, FeasPool] = Fitness Calculation (Pardcor)
end

Algorithm 2: Pseudocode for BGAwEIS.

Xmin Xmax

i = 1
iBVIL iBVIU i = NSBS

(Interval represented by iBVIL and iBVIU )

Figure 2: Visualization of the one-dimensional subsolution regions.

variables, size of solution region, and SGA-
related mutation, crossover, selection parameters
(Parmut, Parcr, Parsel): size of populations, number
of generations, number of subsolution before search
and number of generation for exploration strategy.

The main elements of BGAwEIS are described in the
following sections. An example which clarifies how BGAwEIS
works is also included.

Main Elements of BGAwEIS. BGAwEIS completes one gen-
eration after five interdependent procedures with two pop-
ulations within a core population (see the pseudocode in
Algorithm 2). The number of subpopulations SubpopNum
indicated by the number of populations which is obtained
by dividing the global population into small populations
is taken as 1; the number of individuals contained in each
subpopulation SubpopNum is equal to the value of parameter
SP.

The populations are called inward population Pinw,
outward population Poutw within core population Pcor. These
populations have the same total number of individuals and
every individual in each population has the same number
of design variables assigned to it. The interdependent proce-
dures are extraction-based transmission, fitness calculation,
insertion-based transmission, recreation of the population
and application of SGA operators. In addition, gradual
exploration strategy is applied for utilizing promising solu-
tion regions.

Several parameters are specified prior to the evolutionary
process of BGAwEIS considering size of solution region

(SSR) and number of design variables (NDV). These param-
eters are number of generations (NG), size of population
(SP), number of generations for gradual exploration strategy
(NGGES), and number of subsolution regions before search
(NSBS). The data outcome after the completion of search
is number of feasible solution (NFS) and number of
subsolution regions after the search (NSAS).

The solution regions are composed of a design vector
X = (x1, x2, . . . , xn) which consists of n design variables
indicating the cross-sectional areas of the truss members.
The design variable has an upper bound Xmax and lower
bound Xmin. The value of any discrete design variable in
one-dimensional solution region will be between Xmin = 1
and Xmax. Xmax defines the total number of different cross-
sectional areas in the discrete design variables set.

BGAwEIS works on a multidimensional solution region
which is divided into one-dimensional subsolution regions
and accomplishes the search within these solution regions,
simultaneously. In this regard, one-dimensional subsolution
region bounded by Xmax and Xmin is divided into equal
segments as shown in Figure 2. The number of segments
is denoted by NSBS. The value of NSBS is proportional to
SSR. The bounds of each segment are iBVIL and iBVIU (i =
1, . . . , NSBS). If desired, NSBS can be changed.

The boundaries of subsolution regions are gradually
enlarged. This approach is called “gradual exploration
strategy” and activated by NGGES. The value of NGGES is
specified by the ratio of NG to NSBS. NSBS is proportional
to parameter SSR. After the current generation number
becomes equal to the value of NGGES, the value of NSBS
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is decreased. Thus, the bounds of subsolution regions are
enlarged.

4.1.1. Extraction Based Transmission. In this process, the
individuals that come from the core population are re-
generated in order to generate inward SPPinw and outward
SPPoutw populations. The number of individuals located in
these populations is limited by SP. In the construction of the
inward population, the individuals taken from core SPPcor

population are regenerated by converging them to the best
solution of the feasible pool XBF.

In the generation of the outward population, the individ-
uals taken from core population are regenerated by diverging
them to the bounds Xmin and Xmax of the design variable.
Furthermore, in the generation of the outward and inward
populations, the one-dimensional solution region is divided
into equal segments. While these segments are used to
generate the outward population, the position of the best
feasible solution with respect to these segments is used

to generate inward population. In order to regenerate the
individuals of SPPinw and SPPoutw, the corresponding segment
iBVIL and iBVIU used for the individuals located in SPPcor

is determined. This is followed by finding out the position
of the best feasible XBF solution in the feasible solution pool
to the corresponding segment iBVIL and iBVIU . There are
three possible locations for XBF relative to the corresponding
segment (Figure 3): (i) below, (ii) above, and (iii) within the
corresponding segment.

SPPoutw is regenerated by taking into account the segment
iBVIL and iBVIU used for the individuals of SPPcor. The
individuals of SPPoutw are forced to simultaneously diverge
to both Xmin and Xmax by taking into account XBF, iBVIL,
iBVIU , and SPPcor. An algorithm based on the possibilities
shown in Figure 3 is developed for the regeneration of SPPoutw

from SPPcor (see (7)). In order to explore entire solution
region, two individuals are simultaneously produced for the
regeneration of SPPoutw,

SPPNDV
outw =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xmin + rand(iBVIL − Xmin) : (Indv. 1)
kPNDV

cor + rand(Xmax − kPNDV
cor ) : (Indv. 2)

if iBVIL < XBF < kPNDV
cor

Xmin + rand(kPNDV
cor − Xmin) : (Indv. 1)

iBVIU + rand(Xmax − iBVIU) : (Indv. 2)
else

⎧
⎨

⎩

if iBVIL < XBF < iBVIU
(1.possibility)

Xmin + rand(iBVIL − Xmin) : (Indv. 1)

XBF + rand(Xmax − XBF) : (Indv. 2)

⎧
⎨

⎩

elseif XBF > iBVIU
(2.possibility)

(k = 1, , SP)

Xmin + rand(XBF − Xmin) : (Indv. 1)
iBVIU + rand(Xmax − iBVIU) : (Indv. 2)

⎧
⎨

⎩

else

(3.possibility)
(i = 1, , Number of Current Intervals)

. . .

. . .

(7)

SPPinw is regenerated by taking into account the segment
iBVIL and iBVIU used for the individuals of the SPPcor. The
individuals of SPPinw are forced to converge to the XBF by

taking the iBVIL, iBVIU and SPPcor into consideration. An
algorithm based on the possibilities shown in Figure 3 is
developed for the regeneration of SPPinw from SPPcor:

SPPNDV
inw =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iBVIL + rand(SPPNDV
cor − iBVIL) if iBVIL < XBF < SPPNDV

cor
SPPNDV

cor + rand(iBVIU − SPPNDV
cor ) else iBVIL

⎧
⎨

⎩

if iBVIL < XBF < iBVIU
(2.possibility)

iBVIL + rand(XBF − iBVIL)

⎧
⎨

⎩

if XBF > iBVIU
(3.possibility)

XBF + rand(iBVIU − XBF)

⎧
⎨

⎩

else (i = 1, , Number of Current Intervals)

(1.possibility)

. . .

(8)

An application of extraction-based transmission on two-
dimensional solution region represented by two design vari-
ables is graphically shown in Figure 4. Only design variable
1 that is bounded by (Xmin and Xmax) is visualized. The
solution region has three optimum points. One of these three
optimum points is a global optimum symbolized by “•”. The
remaining feasible solutions are also indicated by “•”. The
individuals from the core population, which are indicated
as “+” and enclosed in a thin dashed closed curve, are used
to build the inward and outward populations (Figure 4). In

the regeneration of the inward and outward populations,
the bounds of segment corresponding to the individual of
the core population are in the range of (iBVIL and iBVIU).
Outward population is symbolized by “∗” and enclosed in
a rectangle with dashed edges (Figure 4). The individuals of
inward population is symbolized as “x” and enclosed in a
rectangle with a thick continuous edge (Figure 4).

4.1.2. Fitness Calculation. The module of fitness calculation
computes the fitness values of individuals in each population
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i = 1
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Figure 3: Graphical depiction of the possibilities for the location of best feasible solution (XBF) into the corresponding segment in extraction-
based transmission.
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Figure 4: Display of the extraction-based transmission.

by taking the constraint violations into account. Thus, fitness
values corresponding to populations Pinw, Poutw and Pcor

are collected in the matrices Finw, Foutw, and Fcor. At the
same time, feasible solutions obtained are chosen to locate
in feasible solution pool when its fitness values are lowest
compared to other feasible fitness values found in the feasible
solution pool.

4.1.3. Insertion-Based Transmission. This process involves
construction of the core population with the individuals
coming from inward and outward populations. The core,
inward and outward populations all have the same number
of individuals. Since one population is generated from two
populations, it is necessary to eliminate a certain number
of individuals. This is carried out by prioritizing certain
individuals according to their feasibility and fitness. All the
feasible solutions located in feasible solution pool are used
in constructing the core population. In order to adapt the
feasible solution pool to the core population, the inward or
outward populations is divided into two equal parts. The
algorithm developed in this regard is managed by four cases
based on the position of the number of feasible solutions
with respect to the inward or outward populations with same
number of individuals, as depicted in Figure 5. These cases
are as follows.

Case 1 (C1) The number of feasible solutions in inward
population NI1 is more than SP/2.

Case 2 (C2) The number of feasible solutions in inward
population NI2 is less than SP/2.

Case 3 (C3) The number of feasible solutions in outward
population NO1 is more than SP/2.

Case 4 (C4) The number of feasible solutions in outward
population NO2 is less than SP/2.

The core population from the inward and outward
populations is constructed from the combination of these
four cases. These combinations are C1+C3, C1+C4, C2+C3,
and C2+C4. They are explained as

(i) collect (NI1 + NO1), (NI1 + NO2), (NI2 + NO1), and
(NI2+NO2) feasible solutions from inward or outward
populations corresponding to the combinations of
“C1+C3,” “C1+C4,” “C2+C3,” and “C2+C4,” respec-
tively;

(ii) rank the collected feasible solutions in a descending
order of their fitness values, and then store it in a
dummy column matrix;

(iii) if the number of individuals in the combination
of “C1+C3,” “C1+C4,” “C2+C3,” and “C2+C4” is
greater than SP, ((NI1 +NO1)−SP), ((NI1 +NO2)−SP),
((NI2 + NO1) − SP) and ((NI2 + NO2) − SP) feasible
solutions with least fitness are discarded from the
dummy column matrix. Otherwise, (SP − (NI1 +
NO1)), (SP − (NI1 + NO2)), (SP − (NI2 + NO1)) and
(SP− (NI2 +NO2)) feasible solutions with least fitness
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Figure 5: Insertion-based transmission.

is discarded from the dummy matrix, respectively. If
the number of individuals in dummy matrix does not
reach SP, some individuals are borrowed from the
inward and outward populations in the descending
order of their fitness values.

4.1.4. Recreation of the Core Population. An algorithm is
developed for the recreation of core SPPcor population. This
algorithm is managed by three possibilities regarding the

position of the boundaries, namely XFmin and XFmax, of the
feasible solution pool with respect to the center (cent) of the
interval representing the one-dimensional solution region.
These possibilities are graphically depicted in Figure 6. The
recreation process is activated depending on NGGES and the
enlargeable bounds of subsolution regions.

The algorithm for the recreation of the core population
SPPcor based on the possibilities given in Figure 6 is formu-
lated by (9),

SPPNDV
cor =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A Case: 1 ≤ (SP∗(30/100))

B Case: (SP∗(30/100)) < k ≤ (SP∗(50/100))

C Case: (SP∗(30/100)) < k ≤ SP

if cent > XF max

A Case: 1 ≤ (SP∗(40/100))

B Case: (SP∗(40/100)) < k ≤ (SP∗(60/100))

C Case: (SP∗(60/100)) < k ≤ SP

elseif XF min ≤ cent ≤ XF max (k = 1, , SP)

A Case: 1 ≤ (SP∗(50/100))

B Case: (SP∗(50/100)) < k ≤ (SP∗(70/100))

C Case: (SP∗(70/100)) < k ≤ SP

else

. . .
(9)

where A Case : Xmin + rand(XF min −Xmin); B Case : XF min +
rand(XF max −XF min); B Case : XF max + rand(Xmax −XF max).

4.1.5. Application of SGA Operators. SGA operators are used
to regenerate the core population in order to provide a
variation for the next generations. These are one-point
crossover, mutation, and roulette wheel selection operators.

Also, some optional operators exist for the search including
what follows (Eiben and Ruttkay [91]).

(i) Multipoint mutation and crossover operators, and
the other selection operators (stochastic universal
sampling and stochastic remainder sampling),

(ii) the generation gap against genetic drift problem,
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Table 1: A preliminary demonstration of GAwEIS to a planar truss with two-bars.

Indiv. Section properities NSBS Xmin Xmax DVN VNDV SN BVIL BVIU

Continous design variables

Indiv. (1) [0.32 0.56] 4 0.1 1
1 0.32 1 0.100 0.325

2 0.56 3 0.551 0.775

Indiv. (2) [0.82 0.24] 4 0.1 1
1 0.82 4 0.776 1.000

2 0.24 1 0.100 0.325

Discrete design variables

Indiv. (1) [001011] 4 1 5
1 1 1 0.100 0.325

2 3 3 0.551 0.775

Indiv. (2) [100001] 4 1 5
1 4 4 0.776 1.000

2 1 1 0.100 0.325

NSBS: number of subsolution regions (the bumber of segment), VNDV: value of each design variable, DVN: design variable number, SN: subsolution region
(segment) number.

Xmin Xmax

XF min XF max XF min XF max XF min XF max

1st possibility 2nd possibility 3rd possibility

Figure 6: Graphical depiction of possibilities for the location of the interval (XFmin, XFmax) and cent = (XFmin +XFmax)/2 in the recreation of
the core population.

(iii) different fitness scaling methods such as linear nor-
malization, baseline windowing, sigma truncating,
linear scaling, and adaptive windowing are employed
along with the elitist selection scheme against the
loosing of the valuable genetic heredity.

The five interdependent procedures mentioned above
are processed in one of the real, integer, and binary coding
schemes. For this reason, recoding of the design variables is
required before these processes are applied.

In order to depict the gradual exploration strategy, let
us consider a planar truss with two bars as an example
and construct a core population with two individuals. The
upper and lower bounds of the design variables are given for
continuous or discrete set of design variables (see Table 1).

The solution region of each design variable is divided
into 4 segments which are used for subsolution regions
obtained by dividing entire solution region into small ones.
Numerical values of design variables vary within the interval
(0.1, 1) for continuous type and discrete type of design
variables. The one-dimensional solution region is divided
into one-dimensional subsolution regions. One-dimensional
subsolution regions are represented by intervals (0.100,
0.325), (0.326, 0.550), (0.551, 0.775), and (0.776, 1.000).
The discrete design variables are coded by using three-
binary-digits. Therefore, the total number of digits is equal
to 6. The continuous design variables are used to find the
corresponding intervals whereas the values of discrete design
variables represent the segment numbers.

4.2. MPGA. MPGA makes use of a migration process with
several parameters in order to provide a control for multiple
populations and a communication between them. The evolu-
tionary processes of MPGA are carried out by using GEATbx

(Polheim [7]). GEATbx is the ability of running with
multiple populations which is systematically structured for
adequately the execution of various evolutionary processes
and rich in options regarding different genetic operators
and their related parameters for real-valued variables. Con-
sidering the main elements of BGAwEIS, some elements of
GEATbx are appropriately activated in the implementation
of MPGA procedure. The crucial evolutionary operators of
MPGA are presented via a pseudocode in Algorithm 3.

The first step is the initialization of SubPopNum subpop-
ulations. In the beginning stage, a single population with
(SubPopIndNum ∗ SubPopNum) individuals to be settled
to the subpopulations is created. Following this step, the
fitness values are calculated by using the fitness functions.
The fitness values are penalized if they violate the constraints
(see (3) and (4)). The penalization values are added to the
fitness values.

Ranking process governed by ranking parameter Parrank

(see related parameters in Section 5) is based on the redis-
tribution of fitness values where artificial values are used
instead of the actual fitness values. In this way, dominance
of the best solutions on the other solutions is weakened.
Ranking process is carried out in two separate stages (Bäck
and Hoffmeister [92]). In the first stage, the fitness values are
recreated by the linear or nonlinear scaling functions. In the
second stage, scaled fitness values are redistributed depend-
ing on the quality of actual fitness values. Furthermore, the
ranking share procedure is applied where fitness values are
rescaled according to their rank (Goldberg and Richardson
[93]).

Following the ranking process, evolutionary approaches
are repeatedly executed in a loop until a predefined loop
number epoch is reached. The first inner loop is regarded
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MPGA (SubPopNum, SubPopIndNum, SSR, NDV, NG = 1, Epoch, Parrank, Parmig, Parcomp,
Parmut, Parcr, Parsel)
Initialize (Pi, SubPopNum, SubPopIndNum)
[Pdi ] = Decoding (Pi)
[Fi] = Fitness Calculation (Pdi )
[Fi] = Ranking(Fi, SubPopNum, SubPopIndNum, Parrank)
for i = 1: Epoch
[Pi] = Subpopulation Order Evaluation(Pi, Fi, SubPopNum, SubPopIndNum)

for j = 1: SubPopNum
[Pi] = SGA (Pi, NG, SubPopIndNum, Fi, Parsel, Parmut, Parcr)

End
[Pi] = Control (Pi, SSR, NDV)
[Pdi ] = Decoding (Pi)
[Fi] = Fitness Calculation (Pdi )
[Fi] = Ranking(Pi, SubPopNum, SubPopIndNum, Parrank)
[Pi] = Competion Process (Pi, Parcomp)
[Pi] = Migration Process (Pi, Parmig)
end

Algorithm 3: A Pseudocode for MPGA.

with determining the order of population. The subpopula-
tions are ordered with respect to the fitness values of the
individuals. For this purpose, a simple competition process
based on ranking procedure is utilized (Polheim [7]). The
rank of subpopulations has a big impact on the migration
process because a communication network comprised of
subpopulations is used for transmission of emigrants and
immigrants.

After ordering subpopulation by taking into account the
fitness values, SGA operators (selection sel, mutation mut,
and crossover cr operators) and their related parameters
Parsel, Parmut, and Parcr (see Section 5) are activated. These
three operators are separately executed for each subpopula-
tion. The subsequent process is activated when the values of
design variable exceed the ranges of SSR. If this occurs, then
related individuals are repaired.

The competition process aims to move the robust indi-
viduals to other subpopulations that exhibit relatively poor
performance (Schlierkamp-Voosen and Mühlenbein [94]).
The competition of subpopulations is governed by parameter
Parcomp (see Section 5) and carried out in three steps: (i)
determination of the capacity of each subpopulations for
taking emigrant and sending immigrant individuals, (ii)
picking robust individuals according to their fitness values,
and (iii) the adjustment of the subpopulations size for the
settlement of the robust individuals (Polheim [7]).

The transmission of immigrants to the other subpopula-
tions is accomplished by a migration process. The migration
process is regulated with parameter Parmig which indicates
the several parameters, such as migration rate, interval, and
topology (see Section 5).

5. Design Details

Due to the differentiation in parameters of the proposed
algorithms, a number of parameter sets have to be tested to

determine those with higher performance. The best way to
accomplish this is to focus on their basic operators. In order
to make an unbiased comparison among these proposed
algorithms, the values of common operator parameters
Parsel, Parmut, Parcr and some evolutionary parameters SP
and GN are kept constant for all algorithms. Operators
of these algorithms and their related parameter values for
each example problem are tabulated on Table 2. According
to Table 2, while crossover rates indicate the number of
individuals to be combined, mutation rates and ranges are
used to define the number of variables per individuals
to be mutated and the range of mutation steps for each
variable, respectively. In addition, the selection operator,
namely stochastic universal sampling, is able to run with
any ranking method, namely, linear and nonlinear ranking
using a ranking-related parameters Parrank. In the approach
of MPGA, the fitness assignment provided by the linear
or nonlinear ranking method is assumed according to a
certain value of its parameter, namely, selection pressure.
Furthermore, the competition of subpopulations is governed
by the parameters, competition interval and rate denoted
by Parcomp. While competition interval determines the
frequency of competition process, the number of migrated
individuals with lower performance to be removed from the
subpopulations is determined by the competition rate.

In the arrangement of operators, various parameter
sets are proposed for each algorithm. BGAwEIS uses two
basic parameters, namely, NGGES and NSBS. In order to
investigate the relation between two parameters, the first
parameter values are specified as “50, 20, 20, and 25,” while
the values of second parameter are fixed by “20, 50, 20, and
15.” Thus, four parameter sets, namely (50, 20), (20, 50), (20,
20), and (25, 15), are devised for design tests.

MPGA is governed basically by migration related param-
eters Parmig such as migration topology (MT), interval
(MI), and rate (MR). The individuals with higher quality
are migrated into five populations. In order to determine
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Figure 7: Introductions of the migration topologies for MPGA with five populations (Pop.) (a) ring-shaped topology, (b) neighborhood
topology, and (c) unrestricted topology.

Table 2: Parameter set and related values proposed for SGA, BGAwEIS, and MPGA.

Algorithm name SGA BGAwEIS MPGA

Population no. 1 1(b) 1 2 3 4 5

Example 1 300 300 60 60 60 60 60

Population size Example 2 500 500 100 100 100 100 100

Example 3 150 150 40 40 40 40 40

Operations Variable type Operator(a) name
Operator
parameter

name

Selection All variables Stochastic universal sampling
Insertion rate 0.50 0.50 0.80 0.60 0.50 0.40 0.30

Pressure — — 1.90 1.70 1.50 1.30 1.10

Ranking
method

— — NL(c) NL NL L(c) L

Crossover
Discrete variables Single-point Rate 0.80 0.80 0.90 0.70 0.50 0.30 0.10

Continuous variables Real type Rate 0.80 0.80 0.90 0.70 0.50 0.30 0.10

Mutation
Discrete variables Single-point Rate 0.70 0.70 1.00 0.80 0.60 0.40 0.20

Continuous variables Real type Rate 0.7 0.70 0.100 0.80 0.60 0.40 0.20

Range 0.50 0.50 0.80 0.40 0.20 0.08 0.01

Competition All variables Competition of subpop. Interval — — 20 20 20 20 20

Rate — — 0.05 0.06 0.07 0.08 0.10

Generation gap All variables — — 0.70 0.70 1.90 1.70 1.50 1.30 1.10
(a)See details in Polheim [7].
(b)Altough existing two populations within a core population, genetic operators are applied to the core population.
(c)NL: Nonlinear L: Linear.

the highest qualified parameter set through examining the
parameter values, MI and MR are taken as “2, 10, 15, 5”
and “0.10, 0.01, 0.10, 0.40”, while migration topologies are
chosen either as unrestricted (denoted by 0) or of neigh-
borhood type (denoted by 1) or ring shaped (denoted by 2)
(see the depiction of proposed migration topologies for five
populations (Pop) in Figure 7). Thus, a total of 48 parameter
sets are tackled to assess the performance of MPGA.

6. Design Examples

The design examples are presented in the increasing order
of complexity degree indicated by the number of truss bars

and nodes. Three design examples with 24, 72, and 200 bars
with one or two loading cases are employed for application
of SGA, BGAwEIS, and MPGA. BGAwEIS and MPGA are
compared considering their optimal designations obtained
by using different parameter sets. The performance of SGA
is evaluated with respect to its optimal designation generated
by using one parameters set (see Table 2).

The dominant evaluation criteria will not only be the
feasible solutions that form the basis of BGAwEIS’ control
mechanism but some statistical measures are also included
into the performance assessment. Besides, two interacting
features of genetic search, exploration and exploitation,
are utilized for the evaluation of proposed algorithms.
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Figure 8: Geometry of spatial truss with 25-bars.

Exploration causes a random moving on the solution space,
but exploitation involves an intensive search of promising
solution region explored previously. In this regard, while
exploration leads to a lower increase in fitness values,
exploitation is responsible for a higher increase.

BGAwEIS is initially applied to observe the interdepen-
dence of its parameters with the output associated with three
ratios:

Ratio 1 R1: (Size of Solution Region SSR)/(Number of
Design Variables NDV),

Ratio 2 R2: (number of generation NG)/(Number of Subso-
lution Regions before Search NSBS),

Ratio 3 R3: (Number of Generation NG)/(Number of Feasi-
ble Solution NFS).

While R1 is indicative about the quantities of feasible
solutions, R2 and R3 are used to measure the performance
of gradual exploration strategy. Moreover, R1 is important
for specifying NG and SP. Optimal designations generated
by use of four parameters sets are both tabulated for their
output including corresponding statistical data and displayed
for their convergence histories. Statistical data are computed
by use of feasible solutions deserved to collect in feasible
solution pool.

The optimal designations generated by MPGA are
reported considering 48 parameter sets. The output data is
both listed and displayed associated with feasible solutions
obtained. For this purpose, the standard deviation and
mean values of feasible solutions are computed. In order
to comparatively present the designations, the parameter
sets which achieve to obtain lower and higher quality of
optimal designations are chosen among 48 parameter sets.
Besides, activated frequencies of these parameter sets are also
presented.

6.1. Design Example 1 (25-Bars Space Truss). This design
problem is widely employed for the evaluation of various
optimization methods (Figure 8). The members of space
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Figure 9: Convergence history of feasible solutions obtained by use
of parameters sets proposed for BGAwEIS (spatial truss with 25-
bars).
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truss linked in 8 groups are selected from a discrete set of
30 available sections (Table 3).

The design and evolutionary data for BGAwEIS (as an
input and output obtained by use of four parameter sets)
are listed on Table 3. The variation in feasible solutions
corresponding to design variables is presented on Table 4.
The convergence history of feasible fitness values are dis-
played in Figure 9.

From the tests of MPGA, the optimal designations
obtained by use of 48 parameter sets are listed including their
statistical analysis results (mean and standard deviations of
feasible fitness values) in Table 5. The high and low values of
these quantities are indicated by shaded boxes. Considering
the parameter sets chosen, convergence history of feasible
fitness values and activated frequencies of their populations
are presented in Figures 10 and 11.
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Table 3: Design and evolutionary data for BGAwEIS (spatial truss with 25-bars).

Design data

Material properties

Modulus of elasticity: 104 ksi

Density of material: 0.1 lb/in.3

Loading data

Case number Joint number X (kips) Y (kips) Z (kips)

1 1 1 −10 −10

2 0 −10 −10

3 0.5 0 0

6 0.6 0 0

Constraint data

Displacement constraints: Uk ≤ 0.35 inc (k = 1, 2) for X and Y directions

Stress constraints: −40 ≤ σi ≤ 40 ksi (I = 1, . . . , 25)

Elements of discrete sets and their position number for Ai (I = 1, . . . , 25)

0.1(1),0.2(2),0.3(3),0.4(4),0.5(5),0.6(6),0.7(7),0.8(8),0.9(9),1.0(10),1.1(11),1.2(12),1.3(13),1.4(14),1.5(15),1.6(16),1.7(17),

1.8(18),1.9(19),2.0(20),2.1(21),2.2(22),2.3(23),2.4(24),2.5(25),2.6(26),2.8(27), 3.0(28),3.2(29),3.4(30)

Evolutionary data

Input

Number of design variables: 8

Size of solution region: 30

Number of generation: 400

Size of inward population: 300

Size of outward population: 300

Size of core population: 300

Cases

Case I Case II Case III Case IV

NGGES 50 20 20 25

NSBS 20 50 20 15

Output

NSAS 13 34 1 1

NFS 7 6 10 18

Ratio 1 R1 3.75 3.75 3.75 3.75

Ratio 2 R2 20 8 20 27

Ratio 3 R3 57 67 40 22

Best feasible fitness value 571.618 592.656 515.845 485.90

Mean of feasible fitness values 659.771 619.972 587.133 521.678

Standard deviation of feasible fitness values 59.591 18.856 67.096 45.880

The optimal designations obtained by proposed algo-
rithms and existing ones outlined in literature are pre-
sented in Table 6 including the critical values of stress and
displacement corresponding to the optimal designations.

6.2. Design Example 2 (72-Bars Spatial Truss). The trans-
mission tower with 72 members is also used by many
researchers as a benchmark problem. This steel structure
has 16 independent design variables and subjected to two
different loading conditions (Figure 12).

The design and evolutionary data for BGAwEIS (as an
input and output obtained by use of four parameter sets) are

listed on Table 7. The variation of feasible solutions values
through generation number are displayed in Figure 13.

Optimal designations generated by use of 48 parameter
set for MPGA are tabulated including their statistical analysis
results (mean and standard deviations of feasible fitness
values) (Table 8). High and low values of these quantities
are indicated by shaded boxes. The convergence history of
feasible fitness values corresponding to these parameter sets
and activated frequencies of their populations are shown in
Figures 14 and 15. The optimal designations obtained by
proposed algorithms and existing methods outlined in the
literature are reported in Table 9 including the critical values
of stress and displacement corresponding to the optimal
designations.
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Table 4: Variation of feasible fitness values according to design variables for spatial truss with 25-bars.

Fitness values
Design variable groups

1 2–5 6–9 10-11 12-13 14–17 18–21 22–25

Feasible design variable values obtained from different generations

624.71 7 29 20 5 5 24 1 29

623.60 28 20 29 26 10 12 11 26

575.49 27 14 28 7 18 15 5 29

565.82 22 17 26 20 17 10 7 29

538.74 24 9 30 2 21 13 4 29

523.87 1 1 29 5 17 10 12 30

516.84 1 10 29 3 12 10 7 30

509.60 1 10 29 3 12 9 7 30

502.30 1 10 29 3 12 9 7 30

495.11 1 10 29 3 12 9 5 30

493.80 1 12 29 1 11 9 4 30

492.63 1 2 30 2 19 10 7 30

491.13 1 2 30 2 18 10 7 30

489.63 1 2 30 2 17 10 7 30

488.13 1 2 30 2 16 10 7 30

487.41 1 1 30 1 20 10 7 30

486.63 1 2 30 1 16 10 7 30

485.9 1 1 30 1 19 10 7 30

Table 5: Statistical analysis results of feasible fitness values obtained by use of parameter sets proposed for MPGA (spatial truss with 25-bars).

Parameter set Best Mean Std Parameter set Best Mean Std

MT=0, MR=0.01, MI=2 502,104 577,038 67,707 MT=1, MR=0.10, MI=2 497,679 553,204 52,961

MT=0, MR=0.01, MI=10 491,290 572,765 73,076 MT=1, MR=0.10, MI=10 486,295 535,339 49,407

MT=0, MR=0.01, MI=15 510,594 594,444 68,822 MT=1, MR=0.10, MI=15 492,001 564,707 61,902

MT=0, MR=0.01, MI=5 501,384 589,606 68,165 MT=1, MR=0.10, MI=5 490,972 582,356 73,748

MT=0, MR=0.05, MI=2 493,103 553,969 57,707 MT=1, MR=0.40, MI=2 493,464 559,504 54,353

MT=0, MR=0.05, MI=10 495,631 564,716 59,424 MT=1, MR=0.40, MI=10 494,279 568,882 63,133

MT=0, MR=0.05, MI=15 493,015 558,278 48,711 MT=1, MR=0.40, MI=15 492,607 564,306 71,255

MT=0, MR=0.05, MI=5 492,631 559,883 58,218 MT=1, MR=0.40, MI=5 488,096 561,872 54,620

MT=0, MR=0.10, MI=2 495,242 579,444 67,091 MT=2, MR=0.01, MI=2 510,554 602,508 77,442

MT=0, MR=0.10, MI=10 487,050 571,735 73,567 MT=2, MR=0.01, MI=10 488,320 574,907 72,809

MT=0, MR=0.10, MI=15 504,839 585,483 63,716 MT=2, MR=0.01, MI=15 505,944 589,977 68,911

MT=0, MR=0.10, MI=5 494,356 581,330 64,624 MT=2, MR=0.01, MI=5 512,587 578,087 59,429

MT=0, MR=0.40, MI=2 491,887 546,261 54,684 MT=2, MR=0.05, MI=2 493,299 574,085 44,792

MT=0, MR=0.40, MI=10 496,481 570,750 54,856 MT=2, MR=0.05, MI=10 489,609 551,748 63,178

MT=0, MR=0.40, MI=15 511,631 583,177 65,891 MT=2, MR=0.05, MI=15 493,907 558,576 53,586

MT=0, MR=0.40, MI=5 488,049 549,874 61,681 MT=2, MR=0.05, MI=5 493,523 563,007 60,136

MT=1, MR=0.01, MI=2 520,044 583,861 70,871 MT=2, MR=0.10, MI=2 491,125 572,506 60,291

MT=1, MR=0.01, MI=10 522,371 607,755 67,601 MT=2, MR=0.10, MI=10 495,555 581,442 79,229

MT=1, MR=0.01, MI=15 506,457 582,052 57,692 MT=2, MR=0.10, MI=15 492,714 570,818 68,788

MT=1, MR=0.01, MI=5 506,226 602,789 60,236 MT=2, MR=0.10, MI=5 511,718 584,622 60,603

MT=1, MR=0.05, MI=2 489,218 580,434 75,958 MT=2, MR=0.40, MI=2 498,955 561,760 50,194

MT=1, MR=0.05, MI=10 507,234 556,624 53,246 MT=2, MR=0.40, MI=10 492,850 574,766 63,040

MT=1, MR=0.05, MI=15 500,155 562,187 53,653 MT=2, MR=0.40, MI=15 491,468 566,396 69,870

MT=1, MR=0.05, MI=5 491,397 561,556 56,276 MT=2, MR=0.40, MI=5 501,608 577,688 51,228
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Table 6: Comparison of optimum designs, critical deflection, and stress values for BGAwEIS (spatial truss with 25-bars).

Ref. Best weight
Design variable groups

1 2–5 6–9 10-11 12-13 14–17 18–21 22–25

Rajeev and Krishnam. [95] 546.01 0.10 1.80 2.30 0.20 0.10 0.80 1.80 3.00

Zhu [96] 562.93 0.10 1.90 2.60 0.10 0.10 0.80 2.10 2.60

Erbatur et al. [97] 493.80 0.10 1.20 3.20 0.10 1.10 0.90 0.40 3.40
∗∗Coello et al. [98] 493.94 — — — — — — — —
∗∗Wu and Chow [99] 491.72 — — — — — — — —

SGA 814.64 0.10 3.00 2.80 2.40 2.20 1.90 2.80 2.40

MPGA 486.29 0.10 0.50 3.40 0.10 1.50 0.90 0.60 3.40

BGAwEIS 485.90 0.10 0.10 3.40 0.10 1.90 1.00 0.70 3.40

Max. displacement. in x, y and z directions: 0.1206, 0.3498, 0.0462 at node1

Max. element stress: 20.2311 at element 25
∗∗

Design variable groups are not presented in the references.
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Figure 11: Activated numbers of each population obtained by
MPGA (spatial truss with 25-bars).

6.3. Design Example 3 (200-Bars Planar Truss). The plane
truss shown in Figure 8 involves both continuous as well as
discrete design variables (Ponterosso and Fox [104]). It has
200 independent design variables (Figure 16).

The design and evolutionary data for BGAwEIS (as an
input and output obtained by four parameter sets) are listed
on Table 10. The variation of feasible fitness values through
generation number are shown in Figure 17.

Optimal designations obtained by MPGA, considering 48
parameter sets are summarized including statistical analysis
results (mean and standard deviations of feasible fitness
values) (Table 11). The convergence history of feasible fitness
values obtained by use of these parameter sets chosen and
activated frequencies of their populations are displayed in
Figures 18 and 19. The optimal designations with higher per-
formance are presented for proposed algorithms and existing
approaches outlined in literature in Table 12 including the
critical values of stress and displacement corresponding to
the optimal designations. Design variables that belong to
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Figure 12: Geometry of the spatial truss with 72-bars.

optimal designation obtained by BGAwEIS are presented in
the appendix.

7. Discussion

In this section, BGAwEIS, MPGA, and SGA are evaluated,
considering the effect of different parameter sets on the
quality degree of optimal designations and then their per-
formance is investigated taking into account the exploration
and exploitation features of genetic search. However, due to
fact that evolutionary parameters of SGA are fixed for design
examples, the evaluation of SGA is skipped here.
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Table 7: Design and evolutionary data for BGAwEIS (spatial truss with 72-bars).

Design data

Material properties

Modulus of elasticity: 104 ksi

Density of material: 0.1 lb/in.3

Loading data

Case number Joint number X (kips) Y (kips) Z (kips)

1 1 5 5 −5

2 1 0 0 −5

2 0 0 −5

3 0 0 −5

4 0 0 −5

Constraint data

Displacement constraints: Uk ≤ 0.25 inc (k = 1, . . . , 20) for X and Y directions

Stress constraints: −25 ≤ σi ≤ 25 ksi (i = 1, . . . , 72)

Elements of continuous sets

0.1 ≤ Ai ≤ 2 (i = 1, . . . , 72)

Evolutionary data

Input

Number of design variables: 16

Size of solution region:∞
Number of generation: 600

Size of inward population: 500

Size of outward population: 500

Size of core population: 500

Cases

Case I Case II Case III Case IV

NGGES 50 20 40 15

NSBS 20 50 15 50

Output

NSAS 8 35 2 23

NFS 8 7 11 12

Ratio 1 R1 ∞ ∞ ∞ ∞
Ratio 2 R2 30 12 40 12

Ratio 3 R3 75 85 55 50

Best feasible fitness value 427.753 452.286 380.784 381.08

Mean of feasible fitness values 694.574 842.722 891.234 882.993

Standard deviation of feasible fitness values 290.294 329.609 409.814 351.210

For ease of presentation, the values of the parameters
discussed below are presented using a vector-like notation
like (•,•,•) where the 1st, 2nd, and 3rd value within the
parentheses correspond to examples 1, 2, and 3, respectively.

7.1. Consideration of Variation in the Values of Evolutionary

Parameters of GAwEIS and MPGA

Regarding with BGAwEIS. (i) Generation number and pop-
ulation size are proportional to R1. In this work, R1 has the
values (3.75, ∞, 0.15) (Tables 3, 7, and 10). Corresponding
to R1 value set, generation number is specified as (400, 600,
200), and population size as (300, 500, 150).

(ii) There is a direct proportionality between R1 and
output NFS computed using the feasible solution pool
(Tables 3, 7, and 10). For example, considering the parameter
sets with higher performance, the values of R1 corresponding
to the value of the output NFS set of (18, 11, 19) are equal to
(3.75,∞, 0.15).

(iii) The best optimal designations are obtained when
using parameters NGGES and NSBS set (25, 15), (40, 15),
and (40, 5) for each design example.

The gradual exploration strategy is activated by parame-
ter NGGES. The parameters NSBS and NSAS are indicative
of the activated frequency of gradual exploration strategy
(Tables 3, 7, and 10). Considering parameter value sets
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Table 8: Statistical analysis results of feasible fitness values obtained by use of parameter sets proposed for MPGA (spatial truss with 72-bars).

Parameter set Best Mean Std Parameter set Best Mean Std

MT=0, MR=0.01, MI=2 640,229 907,646 147,346 MT=1, MR=0.10, MI=2 683,537 912,827 109,804

MT=0, MR=0.01, MI=10 734,629 913,598 113,454 MT=1, MR=0.10, MI=10 594,811 951,129 119,593

MT=0, MR=0.01, MI=15 711,954 913,401 126,805 MT=1, MR=0.10, MI=15 598,955 952,984 124,680

MT=0, MR=0.01, MI=5 695,537 922,956 113,759 MT=1, MR=0.10 MI=5 753,755 943,440 110,412

MT=0, MR=0.05, MI=2 767,134 951,538 123,862 MT=1, MR=0.40, MI=2 618,419 890,768 140,968

MT=0, MR=0.05, MI=10 760,033 917,419 107,376 MT=1, MR=0.40, MI=10 693,387 935,066 116,045

MT=0, MR=0.05, MI=15 633,658 935,527 136,514 MT=1, MR=0.40, MI=15 603,390 871,091 137,827

MT=0, MR=0.05, MI=5 723,858 898,141 114,732 MT=1, MR=0.40, MI=5 717,659 948,091 118,160

MT=0, MR=0.10, MI=2 615,721 926,908 105,704 MT=2, MR=0.01, MI=2 620,216 893,702 146,986

MT=0, MR=0.10, MI=10 689,895 891,536 148,994 MT=2, MR=0.01, MI=10 622,736 902,485 148,753

MT=0, MR=0.10, MI=15 732,047 934,492 113,616 MT=2, MR=0.01, MI=15 644,256 929,181 129,546

MT=0, MR=0.10, MI=5 696,988 904,547 115,401 MT=2, MR=0.01, MI=5 656,687 921,091 119,474

MT=0, MR=0.40, MI=2 704,639 915,372 111,372 MT=2, MR=0.05, MI=2 731,287 922,980 121,985

MT=0, MR=0.40, MI=10 673,424 874,583 125,405 MT=2, MR=0.05, MI=10 729,340 941,674 116,160

MT=0, MR=0.40, MI=15 678,748 890,891 127,018 MT=2, MR=0.05, MI=15 618,836 877,379 138,408

MT=0, MR=0.40, MI=5 682,176 916,081 127,354 MT=2, MR=0.05, MI=5 625,641 885,707 151,493

MT=1, MR=0.01, MI=2 669,352 943,534 122,819 MT=2, MR=0.10, MI=2 690,889 867,153 149,447

MT=1, MR=0.01, MI=10 604,188 917,024 136,592 MT=2, MR=0.10, MI=10 695,986 920,233 100,479

MT=1, MR=0.01, MI=15 621,338 882,202 134,963 MT=2, MR=0.10, MI=15 697,875 909,407 108,374

MT=1, MR=0.01, MI=5 667,580 895,065 133,153 MT=2, MR=0.10, MI=5 638,491 870,591 133,380

MT=1, MR=0.05, MI=2 735,599 945,279 113,778 MT=2, MR=0.40, MI=2 706,990 943,478 133,583

MT=1, MR=0.05, MI=10 625,002 902,000 121,989 MT=2, MR=0.40, MI=10 718,084 939,940 130,951

MT=1, MR=0.05, MI=15 673,220 923,570 114,286 MT=2, MR=0.40, MI=15 698,415 906,278 118,242

MT=1, MR=0.05, MI=5 679,263 932,444 122,463 MT=2, MR=0.40, MI=5 695,139 944,974 125,174
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Figure 13: Convergence history of feasible solutions obtained by
use of parameters sets proposed for BGAwEIS (spatial truss with
72-Bars).

with better performance, the value set of output NSAS
corresponding to the value set of parameter NGGES (25, 40,
40) are (1, 2, 1). The values of parameter NSBS are gradually
decreased and reach the value of parameter NSAS eventually.
This shows that evolutionary search is successfully completed
after gradually enlarging of the bounds of subsolutions
regions. Moreover, R2 also indicates about the activated
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Figure 14: Convergence history of feasible solutions obtained by
use of parameters sets proposed for MPGA (spatial truss with 72-
bars).

frequency of the gradual exploration strategy. The output
NFS is proportionally increased by the activation of gradual
exploration strategy. In this regard, if R2 is close to or higher
than R3, then the gradual exploration strategy is successfully
applied, that is, a feasible solution is obtained once the
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Table 9: Comparison of optimum designs, critical deflection, and stress values for BGAwEIS (spatial truss with 72-bars).

Design
variables

References

Venkaya
[100]

Gellatly
and Berke

[101]

Renwei
and Peng

[102]

Schmit
and Farshi

[103]

Erbatur
et al. [97]

SGA MPGA BGAwEIS

1–4 0.161 0.1492 0.1641 0.1585 0.161 0.873 0.675 0,156

5–12 0.557 0.7733 0.5552 0.5936 0.544 1.681 0.253 0,555

13–16 0.377 0.4534 0.4187 0.3414 0.379 0.100 0.601 0,370

17-18 0.506 0.3417 0.5758 0.6076 0.521 1.418 0.437 0,510

19–22 0.611 0.5521 0.5327 0.2643 0.535 0.986 0.841 0,620

23–30 0.532 0.6084 0.5256 0.5480 0.535 1.530 0.861 0,530

31–34 0.100 0.100 0.100 0.100 0.103 1.982 0.460 0,100

35-36 0.100 0.100 0.100 0.1509 0.111 1.121 1.513 0,100

37–40 1.246 1.0235 1.2893 1.1067 1.310 1.589 1.910 1,250

41–48 0.524 0.5421 0.5201 0.5793 0.498 1.987 0.789 0,523

49–52 0.100 0.100 0.100 0.100 0.110 1.083 0.132 0,101

53-54 0.100 0.100 0.100 0.100 0.103 1.856 0.936 0,105

55–58 1.818 1.464 1.9173 2.0784 1.910 0.268 1.840 1,860

59–66 0.524 0.5207 0.5207 0.5034 0.525 1.473 0.899 0,513

67–70 0.100 0.100 0.100 0.100 0.122 0.849 0.244 0,100

17–72 0.100 0.100 0.100 0.100 0.103 1.469 0.183 0,100

Best Weight 381.28 395.97 379.66 388.65 383.120 1196.89 594.811 380.783

0.0091, 0.0091, 0.2391 at node1 for Case 1; Max. displacement. in x, y and z directions:

0.2499, 0.2499, 0.0718 at node1 for Case 2

Max. element stress: 16.2519 at element 1 for Case 1;

24.9371 at element 1 for Case 2
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Figure 15: Activated numbers of each population obtained by
MPGA (spatial truss with 72-bars).

bounds of subsolution regions are enlarged. For example, an
R2 value set (27, 40, 40) for Cases IV, III, and III of design
examples 1, 2, and 3 corresponds to an R3 value set (22,
55, 11). In design example 2, although the value of R2 is
lower than R3, the value of output NSAS is obtained as 2.

This indicates that the bounds of subsolution regions can be
further enlarged.

Considering the convergence history of feasible fitness
values corresponding to the four cases of each design
example, the success of parameter sets is also confirmed by
consistently decreased trend lines in Figures 9, 13, and 17.

Regarding with MPGA. (i) In the sensitivity analysis of basic
parameters of MPGA, a total of 48 parameter sets composed
of various values of parameters MT, MI, and MR are
considered. The parameter values with higher performance
for each design examples are indicated by a dark-shaded
box and obtained as (1, 0.10, 10), (1, 0.10, 10), and (0,
0.05, 5), each of which is denoted by MT, MI, and MR,
respectively (see Tables 5, 8, and 11). These results show that
migration interval and rates varies proportionally with the
generation numbers and population size. For example, the
migration interval (10, 10, 5) increases with the generation
number (400, 600, 200). This indicates that the rate of
migration interval to generation numbers varies within a
range of (0.015 (or 10/600)–0.025 (or 5/200)) or % (1.5–
2.5). Migration rate varies within a range % (0.05–0.10) of
SP. It appears that the number of migrated individuals is
increased with the population size. For example, the number
of migrated individuals is (30, 50, 10) where the migration
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Table 10: Design and evolutionary data for BGAwEIS (planar truss with 200-bars).

The design data

Material properties

Modulus of elasticity: 30× 103 ksi

Density of material: 0.283 lb/in.3

Loading data

Case number Joint number X (kips) Y (kips) Z (kips)

1 1,6,15,20,29,34,43,48,57,
1 0 0

62,71

1,2,3,4,5,6,8,10,12,14,15,
0 −10 0

16,17,18,19,71,72,73,74,75

Constraint data

Displacement constraints: Uk ≤ 0.50 inc (k = 1, . . . , 77) for X and Y directions

Stress constraints: −30 ≤ σi ≤ 30 ksi (i = 1, . . . , 200)

Elements of discrete sets and their position number for Ai (I = 1, . . . , 200)

0.100(1),0.347(2),0.440(3),0.539(4),0.954(5),1.081(6),1.174(7),1.333(8),1.488(9),1.764(10),2.142(11),2.697(12),

2.800(13),3.131(14),3.565(15),3.813(16),4.805(17),5.952(18),6.572(19),7.192(20),8.525(21),9.300(22),

10.850(23),13.330(24),14.290(25),17.170 (26),19.180(27),23.680(28),28.080(29),33.700(30)

Evolutionary data

Input

Number of design variables: 150

Size of solution region: 30

Number of generation: 200

Size of inward population: 150

Size of outward population: 150

Size of core population: 150

Cases

Case I Case II Case III Case IV

NGGES 50 20 40 15

NSBS 20 50 5 15

Output

NSAS 17 42 1 1

NFS 5 6 19 16

Ratio 1 R1 0.15 0.15 0.15 0.15

Ratio 2 R2 10 4 40 13

Ratio 3 R3 40 33 11 13

Best feasible fitness value 37659.683 39480.881 33405.949 35128.000

Mean of feasible fitness values 146652.109 130204.259 182974.671 153277.013

Standard deviation of feasible fitness values 98588.652 88555.569 87725.056 59388.735

rates are (0.10, 0.10, 0.05) and population sizes (300, 500,
200). The migration topologies referred to as unrestricted
and dominantly neighborhood perform well.

(ii) Considering the lower and upper values of statistical
data of results obtained by parameter sets, several parameter
sets are chosen and indicated by shaded boxes (see Tables 5,
8, and 11). The convergence history of feasible fitness values
corresponding to parameter sets chosen are shown in Figures
10, 14, and 18. The trend lines are consistently decreased for
design example 1, but inconsistently for design example 2
and 3. Particularly, it is observed that the feasible solutions
are generated in the beginning of evolutionary search. Then,

generation of feasible solutions stagnates at the remaining
generation numbers in design examples 2 and 3.

(iii) The activated numbers of populations obtained by
use of parameter sets chosen are shown by bars in Figures 11,
15, and 19. From these figures, it is obvious that the distri-
bution of activated numbers of populations corresponding
to these parameter sets with higher performance is more
regular.

7.2. Performance Investigation of BGAwEIS and MPGA in
Design Optimization. Considering the various parameter
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Table 11: Statistical analysis results of feasible fitness values obtained by use of parameter sets proposed for MPGA (planar truss with
200-bars).

Parameter set Best Mean Std Parameter set Best Mean Std

MT=0, MR=0.01, MI=2 72633,880 80630,569 8571,450 MT=1, MR=0.10, MI=2 43405,949 46677,338 6914,943

MT=0, MR=0.01, MI=10 48093,574 56656,419 4216,594 MT=1, MR=0.10, MI=10 46110,341 52166,191 4860,834

MT=0, MR=0.01, MI=15 46658,763 53303,681 4797,318 MT=1, MR=0.10, MI=15 46797,205 53567,554 6498,843

MT=0, MR=0.01, MI=5 43563,417 49063,016 3737,226 MT=1, MR=0.10 MI=5 45121,767 54525,702 6203,645

MT=0, MR=0.05, MI=2 47659,683 53501,963 4633,370 MT=1, MR=0.40, MI=2 44316,220 48637,425 3729,784

MT=0, MR=0.05, MI=10 44562,844 52044,266 6328,921 MT=1, MR=0.40, MI=10 43141,914 48152,488 5033,876

MT=0, MR=0.05, MI=15 48956,630 55827,141 5594,529 MT=1, MR=0.40, MI=15 46041,416 54705,672 4620,251

MT=0, MR=0.05, MI=5 40079,507 46459,547 5301,405 MT=1, MR=0.40, MI=5 48661,997 54604,399 3207,818

MT=0, MR=0.10, MI=2 40355,654 46811,317 4671,882 MT=2, MR=0.01, MI=2 44005,459 52233,311 6203,747

MT=0, MR=0.10, MI=10 46765,127 55515,587 4599,817 MT=2, MR=0.01, MI=10 50810,975 57383,192 4752,537

MT=0, MR=0.10, MI=15 47207,684 52014,078 4626,456 MT=2, MR=0.01, MI=15 44926,934 52888,602 3982,791

MT=0, MR=0.10, MI=5 56928,673 60909,024 3266,486 MT=2, MR=0.01, MI=5 43645,028 50901,106 5238,565

MT=0, MR=0.40, MI=2 41540,470 46590,198 4894,845 MT=2, MR=0.05, MI=2 49959,857 55518,284 5472,687

MT=0, MR=0.40 MI=10 45410,658 53645,716 4960,128 MT=2, MR=0.05, MI=10 51736,329 62136,457 6177,860

MT=0, MR=0.40, MI=15 49511,159 53964,220 3839,889 MT=2, MR=0.05, MI=15 48048,719 57350,748 5234,649

MT=0, MR=0.40, MI=5 49983,427 53905,603 3265,335 MT=2, MR=0.05, MI=5 43096,147 50628,687 7155,731

MT=1, MR=0.01, MI=2 63494,763 64043,462 350,856 MT=2, MR=0.10, MI=2 70763,445 73702,854 2774,557

MT=1, MR=0.01, MI=10 58124,138 62066,360 4194,507 MT=2, MR=0.10, MI=10 46612,625 51832,507 4416,433

MT=1, MR=0.01, MI=15 53912,544 58640,574 4411,781 MT=2, MR=0.10, MI=15 45523,323 50852,676 4438,879

MT=1, MR=0.01, MI=5 43427,511 48630,306 5504,416 MT=2, MR=0.10, MI=5 52091,564 57823,182 3014,238

MT=1, MR=0.05, MI=2 49480,881 49870,624 5751,019 MT=2, MR=0.40, MI=2 48312,173 54232,383 6997,833

MT=1, MR=0.05, MI=10 41201,483 48559,551 5957,630 MT=2, MR=0.40, MI=10 46408,771 52875,303 3739,149

MT=1, MR=0.05, MI=15 44122,014 49935,079 3517,734 MT=2, MR=0.40, MI=15 46437,702 56239,893 6986,506

MT=1, MR=0.05, MI=5 43731,886 51337,650 6528,667 MT=2, MR=0.40, MI=5 43413,187 53022,954 5995,418

Table 12: Comparison of optimum designs, critical deflection, and stress values for BGAwEIS (planar truss with 200-bars).

References

Ponterosso and Fox [104] SGA MPGA BGAwEIS

Minimum weight 35394.00 122047.14 40079.507 33405.949

Max. displacement. in x, y and z directions: 0.4959, 0.2745, 0.4998 at node1 for Case 1;

0.0948, 0.4738, 0.0428 at node1 for Case 2

Max. element Stress: 20.9676 at element 90 for Case 1;

6.4872 at element 185 for Case 2

sets proposed for BGAwEIS and MPGA, a parameter set
with high performance is determined for each algorithm.
The results obtained with these parameter sets are to be
examined according to exploration and exploitation features
of genetic search discussed previously and the quality of
existing optimal solutions outlined in literature.

(i) The exploration and exploitation features of genetic
search cause a lower and higher increase in the fitness
values, respectively. This is easily confirmed for BGAwEIS
by observing the change in fitness values obtained for
design example 1 (see Table 4). While the difference between
the first and second feasible fitness values is equal to
1.11 (or 624.71–623.60), it increases to 27.08 (or 565.82–
538.74) for the fourth and fifth fitness values. This issue
is also observed in Figure 9, considering the trend lines

corresponding to the best parameter set denoted by Case
IV. The exploration is dominant both in the beginning and
towards the end of search (after generation number 200).
The exploitation becomes dominant within a certain interval
between generation numbers 40 and 200. A balance between
exploration and exploitation is relatively established for Case
III in design example 2 (Figure 13). In Case III of design
example 3, exploration is dominant in the beginning of
evolutionary search, but then exploitation begins to control
the evolutionary search (Figure 17). Starting with a lower
fitness values for the first generation causes a decrease in the
mean and standard deviation of feasible fitness values (see
Figure 9, 13, and 17 along with Tables 3, 7, and 10).

MPGA is managed by a migration dominated evolu-
tionary process. Considering the parameter sets with high
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Figure 16: Geometry of planar truss with 200-bars.
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Figure 17: Convergence history of feasible solutions obtained by
use of parameters sets proposed for BGAwEIS (planar truss with
200-bars).

performance, the dominancy of exploration and exploitation
is consistently observed at different generation numbers in
design example 1 that has a small number of bars and
nodes, but variably for design examples 2 and 3 where an
increased number of bars and nodes are present. Especially,
evolutionary search ends up with stagnation while searching
the feasible solutions in design example 2 and 3 (see
Figures 10, 14, and 18). As in BGAwEIS, the initialization
of evolutionary search with higher fitness values causes an
increase in the mean and standard deviations of feasible
fitness values (see Figures 10, 14, and 18 along with Tables
5, 8, and 11).

(ii) Investigating the optimal designations obtained by
BGAwEIS, MPGA, SGA, and existing solution methods
outlined in literature, it can be said that BGAwEIS is more
efficient in improving the quality of optimal designations
(see Tables 6, 9, and 12). Particularly, in order to cope with
the complexity arising from the increase in the truss elements
and nodes, the values of parameter NSBS associated with the
value of parameters NGGES and NG are elevated. MPGA

improves the quality of optimal designations using unre-
stricted and dominantly neighborhood migration topologies
along with a migration interval about % (1.5–2.5) of NG and
a migration rate about % (0.05–0.10) of SP.

8. Conculusion

In this work, a new genetic algorithm method, namely,
(BGAwEIS) is presented to be used with the design optimiza-
tion of pin-jointed structures. In order to evaluate the capa-
bility and efficiency of BGAwEIS, the optimal designations
obtained by SGA and solution methods outlined in literature
are not only examined but also an MPGA is proposed to
assess the influence of multiple populations on the quality
of optimal designations. The tests are performed on three
design examples having 25, 72, and 200 bars. The following
conclusions are drawn from the results of design examples
considered.

(i) It is shown that bipopulation approach proposed
by BGAwEIS achieves effective usage of exploration and
exploitation features of genetic search simultaneously com-
pared to MPGA with multiple populations. Particularly, it is
shown that the gradual exploration strategy has a significant
impact on BGAwEIS’ performance causing an increase in
the values of NSBS with respect to NGGES and NG. It
is displayed that MPGA is able to improve quality of its
optimal designations by use of migration topologies called
unrestricted and dominantly neighborhood along with a
migration interval about % (1.5–2.5) of generation numbers
and a migration rate about % (0.05–0.10) of population
size. Furthermore, the activated numbers of populations
obtained by use of these parameter sets are shown to be more
homogeneous compared to other ones.

(ii) Although it is shown that MPGA is successful in
providing an equal distribution of activated frequencies
for each population, it has difficulties in directing the
evolutionary search for exploration of new solution regions
because purely using the migration process causes the certain
individuals to be dominant during evolutionary search. This
negativity leads to stagnation on the generation of promising



24 Modelling and Simulation in Engineering

Fe
as

ib
le

fi
tn

es
s

va
lu

es

0

1

2

3

4

5

6

7

8
×104

Generation number

0 20 40 60 80 100 120 140 160 180 200

MI MR MJ Best Mean Std Feas. num.
0
1
0

0.05
0.01
0.01

5
2
2

40079.507
63494.763
72633.88

46549.547
64043.462
80630.569

5301.405
350.856
8571.45

24
5
1

Figure 18: Convergence history of feasible solutions obtained by
use of parameters sets proposed for MPGA (planar truss with 200-
bars).

E
xe

cu
ti

on
n

u
m

be
r

of
p

op
u

la
ti

on
s

th
ro

u
go

u
t

ev
ol

u
ti

on
se

ar
ch

0

10

20

30

40

50

60

Population number

1 2 3 4 5

MI = 0, MR = 0.05, MJ = 5 Best = 40079.507
MI = 1, MR = 0.01, MJ = 2 Best = 63494.763
MI = 0, MR = 0.01, MJ = 2 Best = 72633.88

Figure 19: Activated numbers of each population obtained by
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individuals. However, considering MPGA ability of using
multiple populations with different parameters, it is possible
to improve its performance by the implementation of genetic
operations proposed by BGAwEIS.

(iii) It is demonstrated that BGAwEIS is able to obtain
more convergent results compared to existing methods
outlined in literature and optimal results obtained by MPGA
and SGA.

(iv) The search in BGAwEIS is initiated with either
a randomized or a user-defined population. Although a
randomized population is used in this work, it is noted that
the utilization of the user-defined population provides an
advantage in the search for the offspring on the promising
subsolution regions.

(v) The comparison of BGAwEIS, MPGA, and SGA
is carried out by keeping several evolutionary parameters
within certain limits. If population size and generation
number is increased thereby assigning different values for the

evolutionary parameters of these proposed algorithms, it is
possible to improve quality of optimal designations.

In the future, the efficiency of BGAwEIS will be investi-
gated thereby carrying out the several applications as follows.

(i) Statistical tests, such as parametric or nonparametric
tests of hypotheses and variance analysis, will be performed
for evaluation of the results generated by BGAwEIS. Thus,
the best combination of parameter values will be determined
considering the optimal designations with more convergent
thereby including the decisions about the population distri-
butions.

(ii) The possibilities used in extraction or insertion-
based transmission and recreation of core population will be
arranged for a self-adaptive usage.

(iii) MPGA will be modified to implement the main
components of BGAwEIS. Moreover, the parallel and hybrid
models of this improved algorithm will be also proposed
to observe how the quality degree of optimal designations
varies.

Appendix

The position numbers corresponding to optimal design for
example 3 are [10, 14, 13, 14, 6, 2, 2, 7, 7, 13, 5, 23, 9, 23, 1,
20, 1, 11, 13, 9, 2, 2, 17, 19, 18, 9, 15, 13, 12, 5, 4, 10, 15, 14,
7, 22, 17, 16, 21, 5, 3, 11, 7, 23, 6, 4, 8, 27, 15, 15, 13, 17, 21,
9, 26, 8, 8, 8, 14, 8, 6, 4, 19, 8, 15, 14, 4, 17, 17, 15, 21, 2, 17,
13, 8, 7, 17, 9, 7, 19, 9, 10, 4, 9, 6, 8, 16, 1, 13, 5, 22, 12, 7, 7,
5, 11, 3, 2, 1, 16, 17, 24, 10, 5, 20, 17, 2, 18, 7, 7, 14, 9, 15, 8,
1, 4, 8, 5, 5, 2, 8, 27, 1, 8, 17, 8, 19, 23, 23, 4, 7, 20, 9, 8, 4, 9,
7, 7, 12, 16, 15, 6, 16, 14, 1, 14, 6, 3, 16, 12, 20, 18, 15, 7, 3, 2,
6, 11, 3, 15, 10, 22, 8, 17, 14, 19, 17, 3, 18, 11, 15, 5, 17, 8, 20,
8, 18, 8, 4, 8, 20, 21, 6, 12, 3, 19, 16, 7, 17, 15, 11, 13, 13, 11,
11, 23, 22, 10, 18, 22;]

Nomenclature

ρ: Density of steel
L: Length of member
A: Cross-sectional area
σ : Member stress
σmax: Maximum allowable stress
U : Joint displacement
Umax: Maximum allowable

displacement
F: Fitness value
P: Penalty value
W : Weight of truss system
X : Design vector
r0,ϕ, f : Penalty constants
t: Current generation number
BVI: Values of interval bounds
BVIU : Upper bound of interval
BVIL: Lower bound of interval
Finw,Foutw,Fcor: Fitness values of inward,

outward and core populations
Parrank, Parmig,
Parmut, Parcr, Psel:

Parameters regarded with
ranking mutation, crossover
and selection operations
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Pinw: Inward population
Poutw: Outward population
Pcor: Core population
XF min: Lower bound of feasible

solution pool
XF max: Upper bound of feasible

solution pool
Xmax: Upper bound of design

variable
Xmin: Lower bound of design

variable
XBF: Best feasible design variable
FeasPool: Feasible solution pool used to

collect feasible solutions
DVN: Design variable number
NDV: Number of design variables
NFS: Number of feasible solution

collected in feasible solution
pool

NGGES: Number of generations for
gradual exploration strategy

NG: Number of generations
NSAS: Number of subsolution

regions after search
NSBS: Number of subsolution

regions (number of segment)
before search

SP: Size of population
SSR: Size of solution region
SubPopNum: Number of subpopulations
SubPopIndNum: Number of individuals

contained each
subpopulation

VNDV: Value of each design variable
SN: Subsolution region (segment)

number.
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