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Both the entire weight and joint displacements of grid structures are minimized at the same time in this study. Four multiobjective
optimization algorithms, NSGAII, SPEAII, PESAII, and AbYSS are employed to perform computational procedures related to
optimization processes. The design constraints related to serviceability and ultimate strength of grid structure are implemented
from Load and Resistance Factor Design-American Institute of Steel Constructions (LRFD-AISC Ver.13). Hence, while the
computational performances of these four optimization algorithms are compared using different combinations of optimizer-
related parameters, the various strengths of grid members are also evaluated. For this purpose, multiobjective optimization
algorithms (MOAs) employed are applied to the design optimization of three application examples and achieved to generate
various optimal designations using different combinations of optimizer-related parameters. According to assessment of these
optimal designations considering various quality indicators, IGD, HV, and spread, AbYSSS shows a better performance
comparatively to the other three proposed MOAs, NSGAII, SPEAII, and PESAII.

1. Introduction

The grillage systems utilized in different structures like bridge
or ship decks, building floors and space buildings, and
so forth, contain traverse and longitudinal beams, which
are made of available steel profiles with different cross-
sections. The optimal selection of steel cross-sections from
a discrete set of practically available steel profiles provides
a big contribution to constructing cost of a grid structure.
Therefore, either weight of grid structure or deflection of its
joints is minimized according to certain design limitations
prescribed by any code of practice, such as LRFD. During the
design optimization of grillage systems, designer is frequently
faced with a problem related to making a decision about
determination of the most appropriate one between these
two conflicting and commensurable objective functions.
Although a displacement-related constraint is imposed as a
(max span/300) according to the provisions of LRFD-AISC
specification, the safety margin on displacement constraint
is large when taking into account the grid structures
with higher sensitivity against displacement, such as ship
decks and floors of industrial buildings which bears special

machines required an horizontally balanced position for a
regular work. This task has been easily overcome in a way
of introducing the concept of multi-objective optimization
to the design applications of grid systems.

Preliminary multi-objective optimization techniques,
which their fundamentals were constituted on mathematical
programming principles, were dated back to the 1950s.
However, mathematical programming techniques adjust the
decision variables of continuous type according to gradi-
ent information computed by use of objective functions.
Furthermore, they fail when search space is concave and
discontinuous. In order to deal with these tasks, alterna-
tive optimization procedures, which mimic various natural
events, for example, evolutionary systems, immune systems,
social behaviors of ants, insects, and animals, have been
developed. The most preferable ones are the evolutionary-
based algorithms. These biological evolutionary models uti-
lize characteristic properties of nature, for example, heredity,
selection, and so forth, to create populations with higher
qualities. Particularly, genetic algorithms (GAs) are the most
flexible multi-objective evolutionary tools due to allowing
an implementation of various operators for its evolutionary
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computation. Therefore, it has been hybridized with different
local search techniques.

First study on the multiobjective evolutionary optimiza-
tion, called Vector Evaluated Genetic Algorithm (VEGA)
was performed by use of GA’s principle [1]. VEGA employs
a number of subpopulations to search the solution space
considering a modified selection mechanism. Following the
emergence of VEGA, two featured approaches, linear aggre-
gating and lexicographic ordering of objective functions were
developed [2, 3]. They transformed all objective functions
into a single objective function by way of optimizing
each objective function without decreasing their solution
qualities.

As an alternative to early attempts mentioned above,
a pareto-based evolutionary approach was developed to
increase the population diversity [4]. Some of the prelimi-
nary pareto-based multi-objective optimization approaches
are Nondominated Sorting Genetic Algorithm (NSGA) by
Srinivas and Deb [5], a Niched Pareto Genetic Algorithm
(NPGA) by Horn et al. [6], a Multi-objective Genetic
Algorithm (MOGA) by Fonseca and Fleming [7], and a
Multi-objective Evolutionary Algorithm (MOEA) by Tanaka
and Tanino [8]. In order to improve their optimal results,
these algorithms have been developed by either enhancing
their current optimization strategies, such as Nondominated
Sorting Genetic Algorithm II (NSGA II), Improved Strength
Pareto Evolutionary Algorithm II (SPEA II), Improved
Pareto Envelope-Based Selection Algorithm (Region-Based
Selection) II (PESA II), or adapting a competitive Search
Technique, such as Adapting Scatter Search AbYSS.

Although it is clear that there are a number of evo-
lutionary methods known in the field of evolutionary
multiobjective optimization, in this paper, an exhaustive
literature review on this field is omitted. Instead, repre-
sentative works related to four multi-objective optimization
techniques employed are summarized. Furthermore, the
recent multi-objective approaches utilized in the field of
structural engineering design are also reviewed.

In this regard, paper is organized as firstly introducing
the first steps in MOAs including applications in the field
of structural engineering after a brief introduction to the
multi-objective optimization problem and concepts. The
computational procedures of proposed MOAs, NSGAII,
SPEA II, PESA II, and AbYSS are presented in Section 3.
The design requirements prescribed by LRFD-AISC Ver.13
and optimal design procedure are given in Section 4 prior to
the introduction of search methodology located in Section 5.
Following the discussion of results along presented in
Section 6, final remarks are summarized in Section 7.

2. Background

2.1. Multiobjective Optimization: Problem and Concepts. A
general multiobjective optimization problem consisted of m
objective functions and (J + K) constraints, defined by N
decision variables, is represented as follows:

min/maxF(x)

= {( f1(x) + p1
)
,
(
f2(x) + p2

)
, . . . ,

(
fm(x) + pm

)}
,

x ∈ DS,

DS = {xLn ≤ xn ≤ xLn , n = 1, 2, . . . ,N
}

,

SS =
{
x : gj(x) ≤ 0, hk(x) = 0,

j = 1, 2, . . . , J , k = 1, 2, . . . ,K
}

(1)

X bounded by an upper and lower value, xUn and
xLn are used to represent a decision variable set defined
in decision variable space (DS) and computation of both
objective functions f and constrains gj(x) and hk(x) in a
solution space (SS). In order to explore the optimal solutions
(designations) located in feasible region (FR) which contains
the unpenalized solutions of SS, the obtained solutions are
penalized when they do not satisfy the constraint conditions.
Then, the penalized values denoted by p are included into
their related objective functions f .

At each run of an evolutionary optimization algorithm,
a random solutions set is obtained. Some of them are
Nondominated solutions (none is better for all objectives)
and referred to as “pareto solution” defined in a concept
named as domination [9]. Thus, the pareto solutions are
used to form “pareto front” which determines bounds of
Nondominated solutions.

2.2. First Steps in MOAs. After introduction of the evolution-
ary mechanism to the multi-objective optimization problem,
the development of new multi-objective approaches has been
accelerated [4]. Primary one of these approaches is Non-
dominated Sorting Genetic Algorithm (NSGA) proposed by
Srinivas and Deb [5]. NSGA determines the Nondominated
solutions according to ranks of their reproductive potentials.

Although pareto-ranking procedure gives a guarantee
for transmission of elite individuals to next generations,
an excessive repetition of ranking procedure causes to
lose promising genetic material due to the genetically
distortion of migrated data. In order to diminish this
negative effect, Niched Pareto Genetic Algorithm (NPGA)
that determined the Nondominated solutions by tournament
selection method was suggested [6]. Afterwards, Fonseca and
Fleming [7] suggested a penalization process that generated
the promising pareto solutions considering their crowding
densities.

Using an external archive to store Nondominated solu-
tions leads to an increase in the capabilities of multi-
objective optimization tools, such as in an evolutionary
search proposed by Zitzler and Thiele, called Strength
Pareto Evolutionary Algorithm (SPEA) [10]. The members
of external archive are chosen according to their closeness to
pareto front. However, enlargement of the external archive
makes the convergence speed of its evolutionary search to be
poor due to a decrease in its selection pressure. In order to
deal with this difficulty, Knowles and Corne [11] suggested
a grid system, called Pareto Archived Evolutionary Strategy
(PAES) to compute the optimization-related procedures.
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Hence, distributing the entire population to this grid system
by an adaptive mapping process, which of each node was
used to represent an individual, makes it easier to maintain
the diversity in pareto set.

2.3. An Overview of MOAs Applied in Field of Structural Engi-
neering. Although MOAs mentioned above are successful for
a solution space represented by design variable of continuous
type, they fail to explore optimal designations in nonconcave
and discontinuous solution space of structural design prob-
lems represented by design variables of discrete type. Hence,
the preliminary studies in the field of structural engineering
with multiple objectives were developed using weighting
[12], goal programming [13, 14], and modified game theory
methods [15]. Sunar and Kahraman [16] compared the
computational performances of these algorithms considering
optimal designations of a space truss with 25 bars and a
satellite system and showed that modified game theory and
goal programming were superior to weighting approach.
Although it was reported that the weighting approach failed
to explore Nondominated solutions on nonconvex parts of
pareto front [17–19], it has been improved due to its easy
adaptable mechanism. One of these attempts was based on a
systematic alteration of objective function weights [20]. This
adaptive approach was applied to design optimization of a
truss problem with 3 bars and achieved to obtain a well-
distributed pareto set in a nonconcave solution space.

Real-world engineering structures are represented by
a large number of discrete design variables. Hence, the
evolutionary search is easily misguided due to an increase
in the computational effort. Therefore, new optimization
algorithms inspired by some biological events, such as
particle swarm, differential evolution [21], artificial immune
system [22], ant colony [23], and some other evolutionary
algorithms, such as microgenetic algorithm [24] have been
utilized to solve optimization problems with multiple objec-
tives.

Janga and Nagesh proposed an evolutionary technique,
called elitist-mutated particle swarm optimization and
applied to three test problems: design optimizations of two-
bar truss, I-beam, and welded beam [25].

Cooperate and coevolutionary strategies were intro-
duced to the evolutionary search mechanism to increase
diversity within the set of Nondominated solutions stored
[26]. For this purpose, chromosomes divided into different
species are recombined and evolved to create a pareto set.
However, the number of chromosomes chosen may exceed
their predetermined number. In order to deal with this
difficulty, the exceeded number of chromosomes is reduced
according to the qualities of their crowding distances and
redistributed using an elitism strategy. The fundamentals
of NSGA [5], Niched Pareto Genetic Algorithm (NPGA)
[27, 28], and Controlled Elitist Nondominated Genetic
Algorithm (CNSGA) [5] were constituted on this approach.
The proposed evolutionary approach, which of main evo-
lutionary operations has similarities to the optimization
algorithms named NSGA, NPGA, and CNSGA, were utilized
for topology optimization of 2D heat transfer structures.

It was demonstrated that using a decreased size of species
increased the computational performance of the proposed
optimization procedure.

The other promising approaches were developed as
hybridizing these methods with each other. One of substan-
tial attempts is the integration of neural network and fuzzy
systems to provide a control mechanism for an evolutionary
mechanism [29]. While a neural network is utilized to predict
an individual with higher quality, operator parameters of
evolutionary algorithm are updated according to the rules
of fuzzy logic. This hybrid system was applied for design
optimization of several composite beams with three layers,
piezoelectric bimorph beam, a truss structure, and airplane
wing and displayed to obtain more converged optimal
designations comparing to a pure and independent usage of
each algorithms without any hybrid implementation.

3. Introduction of MOAs, NSGAII,
SPEA II, PESA II, and AbYSS for Design
Optimization of Grillage Systems Utilizing
Multiple Objectives

Although it is displayed that the evolutionary algorithms
have been successfully utilized as optimization tools,
some computational bottlenecks cause to obtain a poor-
distributed pareto front. In order to increase their ability in
generation of promising designations for a diverse pareto
front, the conventional MOAs have been improved and/or
developed. The promising versions are NSGA II, SPEA II,
PESA II, and AbYSS. In this study, these improved or
developed MOAs, are utilized for the optimal designations
of grillage systems noting that the design optimization of
grillage systems was carried out using a single objective
by up to now [30–32] and a displacement-based matrix
analysis approach [33]. In order to execute their optimization
procedures, JMETAL coded in a programming language Java
is employed [34]. Both JMETAL and the proposed four
MOAs are introduced in the following subsections.

A Brief Introduction of JMETAL. JMETAL coded in a plat-
form of object-oriented Java is used as an optimization tool
to solve the multi-objective optimization problems [34]. It
contains a number of classes which represent the building
blocks of various multiobjective algorithms. However, their
basic evolutionary-related elements are the same. Therefore,
the architecture of JMETAL is constituted on a simple
but an interdependently higher framework. JMETAL is
an open source project. The computational procedures of
various MOAs including the ones employed in this study are
extensively documented in [34]. Therefore, the description
of its base classes is not presented. Instead, the computational
order of the preliminary classes that contain the fundamental
parameters is briefly depicted by the pseudocodes. Whereas
the class names are presented by use of a mark “ ”, their
related parameters are defined by use of italic characters.

In general, JMETAL contains six packages, named “base,
experiments, metaheuristics, problems, quality indicator
and util”. While the package of “experiments” includes



4 Advances in Civil Engineering

Initialize population (population size)
evaluate population, evolution ++
while evolution <max evolution {

if evolution <max evolution {
Offspring =mutation(crossover(selection(population)))
evaluate offspring, evolution ++}

front=ranking(population U offspring).getsubfront
population.clear
front=CrowdingDistanceAssignment(front)
population.add(front)

if HV ≥ 0.98 ∗ trueparetofronthypervolume {
stop}}

front=Ranking(population).getsubfront

Algorithm 1: A pseudocode for NSGA II procedure.

Plastic

Lp Lr

(λr f )

ElasticInelastic

(λp f )

Mp

Equation (2) Equation (3)
Equation (9)

Equation (5)
Equation (10)

(0.7∗ Fy ∗ Sx)

Figure 1: Nominal flexural strength as a function of “flange width-
thickness ration of rolled I-shapes” and “unbraced length and
moment gradient” (it corresponds to Figure C-F1.1 and C-F1.2.1
in the design manual of AISC-LRFD Ver.13).
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Figure 2: Shear coefficient Cv for Fy = 50 ksi and kv = 5.0
(it corresponds to Figure C-G2.1 in the design manual of AISC-
LRFD).

configurations of various metaheuristic procedures, such
as AbYSS and NSGAII, their default configurations are
located in the “settings” package. Design problems with
various complexities are comprised in the “problems”
package. The run of JMETAL firstly begins by execution
of a purposed metaheuristic class, such as AbYSS.Java,
located in the “experiments” package. This class invokes
the experiment class which is responsible for activation
of proposed metaheuristic algorithm. The purposed meta-
heuristic class invokes a class of design problem to be
solved. Basic computation processes, named “evaluate () and
evaluateconstaint (),” are carried out in this class, named
design problem. Due to the use of binary coding scheme
for the evolutionary computations, generated individuals can

exceed the predefined upper bounds of design variables. In
order to deal with inappropriate binary strings, the purposed
meta-heuristic class named AbYSS.Java, and its related
subclasses are extended by including a new class named
“repairing mechanism” which is responsible to correct the
decoded values of binary strings according to the limits of
design variables.

3.1. Nondominated Sorting Genetic Algorithm II, NSGA II.
NSGA was firstly designed by Srinivas and Deb [5]. The
evolutionary computation of NSGA is managed by classified
“population size” individuals. Classification process begins
firstly ranking the population in order to determine Non-
dominated individuals. Then, fitness values of individuals
are shared considering their niching measures. The indi-
viduals with shared fitness values are selected by use of
a selection method, called “stochastic universal sampling”
and regenerated using mutation operator with a probability
mutation probablity and combination operator with a prob-
ability crossover probablity until completing a predetermined
evolution number max evolution. The enhanced version of
NSGA, NSGA II (see pseudocode in Algorithm 1) was
developed to increase diversity among individuals [35, 36].
Although NSGA II utilizes the evolutionary operators for
generation of individuals as in the computational procedure
of NSGA, the generated individuals stored in an archive with
population size individuals are used to obtain a pareto front
considering crowding distances of individuals. Furthermore,
a hypercube, which is formed by use of the Nondominated
individuals, is utilized to compute a hypervolume.

3.2. Improved Strength Pareto Evolutionary Algorithm, SPEA
II. The primary version of SPEA approach was firstly
suggested by Zitzler and Thiele [10]. Its evolutionary
processes are managed by two populations. While one
of these populations, called regular population is utilized
to generate offspring, other population, called an archive
with archive size individuals is employed to preserve the
evolutionary information of pareto front. In the beginning
of evolutionary process, the archive is empty and filled by
promising individuals. The exceed number of individuals
are reduced giving a higher chance to the individuals of
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initiliaze solutionSet(population size), solution (population size)
initiliaze archive (archive size)
evaluate solution, evolution ++
solutionSet.add(solution)
while evolution<max evolution {

spea=Spea2Fitness(solutionsSet U archive)
spea.FitnessAssignmanet
archive=spea.enviromantalSelection(archive size)

if evolution <max evolution {
offspring=mutation(crossover(selection(archive)))
evaluate offspring, evolution ++}

solutionSet.add(offspring)}
front=Ranking(archive).getsubfront

Algorithm 2: A pseudocode for SPEA II procedure.

initialize archive = AdaptiveGridArchive (archive size, bisections)
initialize solutionSet (population size)
initialize solution (population size)
solution = PESAIIselection (solution)
evaluate solution, evolution ++
solutionSet.add(solution)
archive.add(solutionSet)
solutionSet.clear
while evolution < max evolution {

offspring=mutation(crossover(selection(archive)))
evaluate offspring, evolution ++
solutionSet.add(offspring)
archive.add(solutionSet)
solutionSet.clear}

Algorithm 3: A pseudocode for PESA II procedure.

archive. For this purpose, a clustering technique which is
based on an assignment of strength value to the individuals
and an assessment of these individuals according to their
strength values is utilized to discard the related individ-
uals. However, a decrease in variation among individuals
of population causes to increase the randomness in the
evolutionary search and hence decrease the accuracy degree
of density estimation, which is utilized by clustering process
[37]. This leads to vanishing of the promising solutions
located on the pareto front. In order to deal with this
negativity, SPEA II is developed. SPEA II estimates density
of strength values using kth nearest neighbor method (see
Algorithm 2). Furthermore, a new selection mechanism,
called “environmental selection”, is used to update the archive
and to preserve promising solutions during truncation of
archive.

3.3. Improved Pareto Envelope-Based Selection Algorithm
(Region-Based Selection), PESA II. Pareto Envelope-Based
Selection Algorithm (PESA) was firstly presented by Corne
et al. [38]. Having similarities to basic features of SPEA II,
PESA uses two populations for its evolutionary processes.
However, in the estimation of strength-value density, PESA
uses a measure called “sequence factor.” An extended version
of PESA, PESA II, utilizes hyperboxes which are obtained
by dividing the entire search space into small ones (see
Algorithm 3). Thus, the number of individuals contained

in hyperboxes is used to determine a sequence factor.
Following the determination of subregion numbers defined
by bisections, the archive is created in the module named
“AdaptiveGridArchive.” A population called “solution” is
initialized and evolved by the application of evolutionary
operators until being completed a fixed evolution number.
Although SPEA II was shown to be computationally faster
than NSGA II and SPEA II, some complicating tasks, such
as possibility of existing dominated individuals in any hyper-
boxes, keeping a fixed number of subregions throughout the
evolutionary search, and so forth, must be overcome in order
to obtain satisfactory optimal designations [39, 40].

3.4. Adaptive Scatter Search for Multiobjective Optimization,
AbYSS. AbYSS can be categorized as an evolutionary-search-
based optimization algorithm derived by use of principle
features of NSGA II, PESA II, and SEPA II [41]. A
pseudocode for ABYSS is presented in Algorithm 4. After
initializing a population with population size individuals,
the population is firstly regenerated using grid-based search
technique named “diversification generation.” Then, the
regenerated population is maintained by discarding the
mutated individuals with poor qualities according to a
dominance-based comparison test. This elimination process
named “improvement” is inspired from NSGA II approach.
Then, a search process named “reference update” is invoked
to firstly construct a sub-population RefSet2 with Ref Set size
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Figure 3: Geometry of 68-members grid structure including locations of point loads.

individuals from a sub-population RefSet1 with Ref Set2 size
individuals and then, update the sub-population RefSet2.
The sub-population RefSet2 is built by the individuals of
RefSet1 with minimum euclidian distance. After generation
of reference sets, the Nondominated individuals extracted
from the reference sets are stored in an external population
called archive with archive size individuals using density
estimation of individuals. In this regard, the existence of
individuals in a densest region is identified considering
their niching measures. Its features of utilizing the niching
measures and density estimation for the evolutionary search
are inspired from adaptive grid method by PAES II and
selection strategy by SPEA II, respectively.

4. Optimum Design of Grillage Systems

The proposed four MOAs are presented in the previous
section. These MOAs are evaluated for the optimal designa-
tions of grillage systems in this study. For this purpose, the
objective functions, their related constraints, and structural
analysis procedures are coded in Java. In this regard,
the design requirements used in constraints and design
optimization procedure are introduced in Sections 4.1 and
4.2.

4.1. Design Requirements of Grillage Systems according to
LRFD-AISC Ver.13. Grillage systems comprise a number
of lateral braced beams. If the beams loaded in plane of
lateral system have no sufficient lateral stiffness, then they are
buckled out of plane of loading. This case is called lateral-
torsional buckling. The lateral-torsional buckling strength
varies depending on the unbraced length and compactness
of beam plays an important role in the load carrying capacity
of beam. If a compact beam determined according to its
web and flange dimensions has a sufficient unbraced length,
then nominal flexural strength is calculated in an elastic
domain, otherwise an inelastic one. In the inelastic case, a
short and unbraced beam length causes to yield its outer
fibers before attaining elastic buckling load. The formulation
of nominal flexural strength Mn that is managed by limit

states of yielding, lateral torsional, and flange local buckling
is presented in the following part as defined in AISC-LRFD
Ver.13 (see Figure 1). For simplicity, two distinct figures
used to depict the lateral-torsional and flange local buckling
depicted in AISC-LRFD Ver.13 is coarsely combined, but
equation numbers corresponding to formulations for limit
states are presented in a separate parenthesis.

The limit states of yielding of beam cross-section are
written as

Mn =Mp = Fy ∗ Zx. (2)

In elastic and inelastic domains, two unbraced lengths Lp

and Lr are used to determine the compactness of sections
manage the strength of lateral-torsional buckling. Nominal-
flexural strength Mn is computed as follows.

For inelastic-torsional buckling limited by Lp < Lb < Lr ,

Mn = Cb ∗
⎡

⎣Mp −
(
Mp − 0.7∗ Fy ∗ Sx

)
∗
⎛

⎝

(
Lb − Lp

)

(
Lr − Lp

)

⎞

⎠

⎤

⎦,

(3)

where,

Lp = 1.76∗ ry ∗
√

E

Fy
,

Lr = 1.95∗ rts ∗ E
(

0.7∗ Fy

)

√
Jc

(Sx ∗ h0)

∗

√
√
√
√√
√1 +

√
√
√√
√1 + 6.76∗

⎛

⎝

(
0.7∗ Fy

)

E
∗ (Sx ∗ h0)

Jc

⎞

⎠

2

.

(4)

For elastic-torsional buckling occurred in a segment
limited by Lr < Lb (see Figure 1),

Mn = Fcr ∗ Sx, (5)
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where,

Fcr =
(
Cb ∗ π2 ∗ E

)

(Lb/rts)
2

√

1 + 0.078∗ Jc
Sx ∗ h0

∗
(
Lb
rts

)2

, (6)

r2
ts =

Iy ∗ h0

2∗ Sx
. (7)

In (6), moment modification factor Cb is utilized to
consider the effect of lower torsional buckling arisen from a
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nonuniform distribution of moment. Therefore, associating
with moment diagrams, it is computed as follows.

Cb = 12.5∗Mmax

2.5∗Mmax + 3∗MA + 4∗MB + 3∗MC
. (8)

The local buckling of flanges for noncompact section is
governed by two parameters, λp f , λr f . Depending on these
parameters, nominal-flexural strength Mn is computed as
follows.

For inelastic-flange buckling occurred in a segment
limited by λp f < (b f /2t f ) < λr f ,

Mn =
⎡

⎣Mp −
(
Mp − 0.7∗ Fy ∗ Sx

)
∗
⎛

⎝

(
λ− λp f

)

(
λr f − λp f

)

⎞

⎠

⎤

⎦.

(9)

For elastic-flange buckling occurred in a segment limited
by λr f < b f /2t f ,

Mn = (0.9∗ E ∗ kc ∗ Sx)
λ2

. (10)

In addition, nominal-shear strength Vn is computed as
follows (see the limit states of shear strength in Figure 2):

Vn = 0.6∗ Fy ∗ Aw ∗ Cv, (11)

where,

Cv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0 if
(
h

tw

)
≤ 1.10∗

√

kv
E

Fy
,

(
1.10∗

√

kv ∗
(
E/Fy

))

(h/tw)

if 1.10∗
√

kv
E

Fy
≤
(
h

tw

)
≤ 137∗

√

kv
E

Fy
,

(1.51∗ E ∗ kv)

(h/tw)2 ∗ Fy

if
(
h

tw

)
≥ 1.37∗

√

kv
E

Fy
.

(12)

In (11), web-plate buckling coefficient kv is equal to 5 for
unstiffened webs with (h/tw < 260).

4.2. Design Procedure for Optimal Grillage Systems. In this
work, a design problem of grillage system is represented by
two objectives, entire weight of grillage system, and joint
deflection, and expressed as follows:

minW =
⎛

⎝
m∑

k=1

(w ∗ l)k + p1

⎞

⎠, mind =
(

max(d) + p2

)
,

(
k = 1, . . . ,m, i = 1, . . . , 12, j = 1, . . . ,n

)
.

(13)
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Figure 5: Convergence history obtained by AbYSS (Case 3).

Subject to

g1k = Mu(
φb ∗Mn

) (k = 1, . . . ,m), (14)

g2k = Vu(
φs ∗Vn

) (k = 1, . . . ,m), (15)

g3i j = d

dmax

(
i = 1, . . . , 12, j = 1, . . . n

)
, (16)

p1 =
⎛

⎝
m∑

k=1

(
g1k + g2k

)
⎞

⎠ ∗ (r0 ∗ t)ϕ ∗ f

{
if g1k or g2k ≥ 1 (k = 1, . . . ,m)

}
,

(17)

p2 =
⎛

⎝
n∑

j=1

12∑

i=1

g3i j

⎞

⎠∗ (r0 ∗ t)ϕ ∗ f

{
if g3i j ≥ 1

(
i = 1, . . . , 12, j = 1, . . . ,n

)}
.

(18)

The term W is total weight of all grid members and
computed using w and l which are unit weight to be selected
from W-sections list of LRFD-AISC Ver.13 and length of
a grid member. While d is termed as a joint displacement
corresponding to related degree of freedom which is denoted
i, total numbers of joint and grid member are indicated by
n and m. dmax is taken as (max span/300). In constraint
inequalities, while displacements of joints are constrained
by an upper limit fmax, bending-moment strength of grid
members Mu is limited by allowable nominal-moment
strength Mn. Shear strength of grid members Vu is limited by
allowable nominal-shear strength Vn (see Vn in (11)). In (14)
and (15), φb and φs are resistance factors for moment and
shear and taken as 0.9. Furthermore, it must be noted thatMn

indicated in (14) manages total three strength requirements:
yielding (2), flange-local buckling (9) and (10), and lateral-
torsional buckling (3) and (5).

5. Search Methodology

Due to the fact that application problems are chosen
from real-world engineering design problems with design
variables of discrete type, a reliable and consistent search
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Figure 6: Strengths and displacements of random penalized solutions corresponding to minimum displacement (a1)–(a5), unpenalized
solutions corresponding to maximum displacement (b1)–(b5), and maximum weight (c1)–(c5) (see Figure 5).

strategy must be established for an evaluation of proposed
MOAs’ search capabilities. After generating optimal des-
ignations, the computational performances of MOAs are
assessed according to the closeness of these designations to
a pareto front known beforehand thereby using a number
of quality measuring metrics. Furthermore, accuracy of

assessment of multiobjective optimization algorithms must
be confirmed by outcomes of statistical tests. The other
important difficulty is how to adopt a common methodology
for a conventional mathematical model, which is performed
its computational procedures by usage of design variables
of continuous type. Therefore, a reasonable approach is
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Figure 7: Geometry of 160-members grid structure including locations of point loads.

to obtain a pareto front by running current discrete opti-
mization model in bigger and repeated generation numbers.
In this regard, independent 10 runs of proposed MOAs
are executed by use of both increased and decreased size
of generation and population. Then, optimal designations
obtained are utilized in computation of quality-measuring
metrics, such as hyper volume and generational distance.
Due to the nature of stochastic algorithms, a statistical test for
analysis of these quality-measuring metrics computed must
be performed with a certain level of confidence. Moreover, in
order to decrease the effect of parameter values of evolution-
ary operators on MOAs’ performance evaluation, various
parameter combinations are also considered. Details about
quality-measuring metrics and statistical tests employed for
MOAs’ performance assessment are presented in Sections 5.1
and 5.2.

5.1. Quality-Measuring Metrics. Differentiation in MOAs
architecture prevents to lay down the different aspects of
MOAs’ performance. Therefore, quality indicators have a
big impact on accurately evaluation of MOAs performance.
In this study, three quality indicators, hyper volume ratio
(Hv), inverted generational distance (IGD), and spread (S)
are employed.

Hyper Volume Ratio. Hyper volume (HV) is an indicator
which defines a volume covered by n Nondominated set of
solutions included in a region bounded by a pareto front
(see (17)). For this purpose, a reference point chosen among
Nondominated solutions with worst objective is utilized in
computation of hypercube of each Nondominated solutions,

HV = volume

⎛

⎝
n⋃

i=1

Vi | refpoint

⎞

⎠. (19)

Hyper volume ratio (HVR) is an indicator which shows
a ratio of current hyper volume to the true hyper volume
computed by use of true pareto front and nondominated
solutions true pareto front (see (18)),

HVR = HVcurrent

HVtrue
. (20)

Higher values of HVR indicate a large coverage of
Nondominated solutions in a solution space.

Inverted Generational Distance. Inverted generational dis-
tance (IGD) estimates the far of Nondominated solutions
included in current pareto front generated by the proposed
MOA, from those included in true pareto front (see (19)),

IGD =
√∑n

i=1 d
2
i

n
, (21)

where n is number of Nondominated solutions found by
proposed MOA and di is Euclidian distance between each of
these and nearest member of true pareto front. A lower value
of IGD indicates an increase in approximation of current
pareto front obtained to the true pareto front in terms of
convergence.

Spread. This quality metric abbreviated as (S) is used to
measure an expanding spread exhibited by Nondominated
solutions obtained and computed as

S =
d f + dl +

∑N−1
i=1

∣
∣
∣di − d

∣
∣
∣

d f + dl + (N − 1)∗ d
, (22)

where di is Euclidian distance between consecutive Non-
dominated solutions, d is mean of these distances, and d f

and dl are distances to extreme solutions of current pareto
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Figure 8: Pareto fronts of a set of random nondominated solutions obtained by use of an increased population size and evolution number
(a) and AbYSS, NSGAII, PESAII, and SPEAII (b1)–(b4).

front. A lower S value points out a better distribution among
Nondominated solutions. In other words, it is implied that
Nondominated solutions are located in different positions.

5.2. Statistical Tests. The quality indicators mentioned above
are utilized in comparison of MOAs’ distribution qualities.
Therefore, after computing means and standard deviations of
quality indicators obtained by in the end of independent 10
executions, consistency of these results are checked through
performing a statistical analysis in a certain level of confi-
dence. If a probability value resulted from a statistical testing

procedure satisfies a user-defined significance level, then it is
said that distribution of current MOAs approximation set is
acceptable.

Computational procedures of the statistical analysis are
performed in MATLAB [42]. Firstly, lillie test is carried
out to check quality indicator values for whether to be
exhibited a normal distribution (if the null distribution is
completely specified, then Kolmogorov-Smirnov test is more
appropriate). Then, existence of a variance homogeneity
is controlled through Levene’ test. If homogeneity in the
variance exists, Welch test is performed, otherwise Anova
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Table 1: Cases used to represent the parameter combination for evolutionary operators of MOAs and their assigned values.

NSGA II SPEA II PESA II AbYSS

Population size 50 and 100 50 and 100 50 and 100 50 and 100

Evolution number 1,000 and 5,000 1,000 and 5,000 1,000 and 5,000 1,000 and 5,000

Crossover probability

1.001 1.005 1.001 1.005 1.001 1.005 1.001 1.005

0.252 0.256 0.252 0.256 0.252 0.256 0.252 0.256

1.003 1.007 1.003 1.007 1.003 1.007 1.003 1.007

0.254 0.258 0.254 0.258 0.254 0.258 0.254 0.258

Mutation probability

1.001 1.005 1.001 1.005 1.001 1.005 1.001 1.005

0.252 0.256 0.252 0.256 0.252 0.256 0.252 0.256

0.253 0.257 0.253 0.257 0.253 0.257 0.253 0.257

1.004 1.008 1.004 1.008 1.004 1.008 1.004 1.008

Crossover Distribution Index

301 155 301 155 301 155 301 155

82 46 82 46 82 46 82 46

303 157 303 157 303 157 303 157

84 48 84 48 84 48 84 48

Mutation Distribution Index

301 155 301 155 301 155 301 155

82 46 82 46 82 46 82 46

83 47 83 47 83 47 83 47

304 158 304 158 304 158 304 158

Reference set I — — — — — 20 20

Reference set II — — — — — 20 20

Archive size — 10 20 40 20 40 40

Bisection II — — — 10 5 — —

test. In order to compare the statistical outputs acquired from
different algorithms, a post hoc testing is performed through
“multicompare” function coded in MATLAB.

6. Discussion of Results

It is known that the computational performances of MOAs
vary depending on the values of their interacting parameters.
Therefore, in order to provide an accurate evaluation for
their computational performances, some combination sets of
parameter values are chosen. Due to a variety on the operator
parameters of MOAs, various parameter combinations and
the assigned values for their evolutionary operators are
summarized in Table 1. The combination numbers (C. No.)
are denoted by superscripts attached to related parameter
values. In order to provide unbiased competition for the
performance evaluation of MOAs employed, the parameter
values of evolutionary operators are kept for each MOA.
In this regard, the parameter combinations are sorted into
two main groups denoted by numbers (1–4) and (5–8).
Furthermore, each of main groups contains both upper
and lower value sets of mutation and crossover distribution
indexes in order to provide an intensive mutation or
crossover effect for evolutionary search. For example, in
first case of AbYSS (shown by italic characters in Table 1),
Crossover and Mutation Probability values are 1.00 and 1.00;
the values of Crossover and Mutation Distribution Indexes
are 30 and 30; the values of Reference set I–II and archive size
are 20, 20, and 40. Hence, reproducibility of related MOAs by

use of these parameters is ensured. The detailed descriptions
of these parameters are found in Section 3.

The penalty-related parameters used by penalty func-
tions of weight and displacement are taken as r0 = 0.05 and
0.005, ϕ = 3 and 2, and f = 2 and 1 for P1 and P2 (see (17)
and (18)), respectively.

Using these different parameter combinations, an opti-
mal design of grillage systems is carried out by four MOAs,
NSGA II, SPEA II, PESA II, and AbYSS according to
optimum design procedure mentioned previously. The yield
stress, elastic modulus, and shear modulus of steel material
used to construct the grillage system are taken as 50 ksi
(345 MPa), 29,000 ksi (200 MPa), and 14,500 ksi (100 MPa).
Cross-sectional properties of grid members are chosen from
a discrete set with 274 W-sections. Sequence number of
each cross-sections included in this profile list database
is the same as given in LRFD-AISC Ver.13 and contains
all sectional properties (such as area, inertia moments in
all directions). Design variables are represented by binary
strings. Thus, a binary length of l = 9 with 29 = 512
possible gene combinations will be adequate to represent 274
ready sections. Profile list database, finite element attributes
of design examples and a structural analysis formulation for
the grillage system are coded in Java in order to appropriately
compile with the optimization tool named JMETAL. In this
regard, a user-defined input data coded in Java Language
and related parts are presented for the design optimization
of example 1 by utilizing AbYSS algorithm-based optimizer
(see Algorithm 5). Details about class names and their related
packages in Algorithm 4 are given in Section 3.
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initialize solution (population size)
solution=divesificationGeneration(solution)
evaluate solution, evolution ++
solution=improvement(solution)
solutionSet.add(solution)
while evolution < max evolution {
// building and insertion of individuals RefSet1 and RefSet2
referenceUpdate(true)
newsolution=subsetGeneration

while newsolution > 0 {
// update archive and reference sets using RefSet1 and RefSet2
referenceUpdate(false)}

if evolution < max evolution {
solutionSet.clear
solution =RefSet1 (ref set1 size)
solution=improvement(solution)
evaluate solution, evolution ++
solutionSet.add(solution)
RefSet1.clear
RefSet2.clear

// compute the crowding distance assignment of achieve
//individuals. Then, after sorting the archive, use them to
//create solutionSet with “insert” individuals

insert=populationSize/2
if insert > (archiveSize), insert= archiveSize
if insert > (populationSize/2 – size(solutionSet)),

insert=(populationSize/2 – size(solutionSet))
solutionSet.add (archive(insert))

// complete randomly the remaining individuals of solutionSet
while size(solutionSet) < populationSize/2 {

solution=divesificationGeneration(solution)
evaluate solution, evolution ++
solution=improvement(solution)
solutionSet.add(solution)}}}

Algorithm 4: A pseudocode for AbYSS procedure.

Table 2: Values of measurement quantities obtained by “Eval. Number = 1,000” and “Pop. Size = 50” for design example 1.

C. no.
IGD HV Spread

AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII

Means

1 0.1869 0.2575 0.1299 0.1067 0.5402 0.2284 0.7833 0.6032 0.9089 0.9995 0.9575 0.9875

2 0.2760 0.2543 0.1622 0.0844 0.6963 0.8968 0.1139 0.5999 0.9624 0.9810 0.9993 0.9737

3 0.1626 0.2435 0.1656 0.2599 0.5197 0.2754 0.8486 0.4484 0.9639 0.9562 0.9359 0.9723

4 0.1190 0.1966 0.2630 0.1818 0.8900 0.2818 0.4662 0.5138 0.9689 0.9790 0.9621 0.9852

5 0.0358 0.2511 0.0838 0.2638 0.3302 0.8801 0.3257 0.4077 0.9541 0.9508 0.9403 0.9922

6 0.2551 0.0428 0.2290 0.1455 0.2297 0.4443 0.6302 0.1080 0.9150 0.9917 0.9912 0.9954

7 0.1386 0.0759 0.1524 0.0459 0.9045 0.9045 0.8787 0.9045 0.9636 0.9501 0.9563 0.9458

8 0.1493 0.0540 0.0301 0.1450 0.3109 0.6033 0.5799 0.9206 0.9173 0.9883 0.9635 0.9620

Standard deviations corresponding to best means and assessment of significance levels according to statistical tests

0.0018 0.0011 0.0051 0.0019 0.0022 0.0048 0.0064 0.0013 0.0051 0.0109 0.0103 0.0066

(−) (−) (−)

Design examples of real-world engineering structures are
presented in an order of increasing size of their elements
and joints. In order to display the change in the strength
of grid members, both penalized and unpenalized optimal
results corresponding to its maximum joint displacement or
weight of grid structure are presented considering the joint
and member numbers. Furthermore, convergence history

obtained in the end of a complete evolutionary search is also
presented. In order to provide an easier visualization for both
weight and displacement values, the weight and displacement
values are displayed for each of 100 equal segments obtained
by a division of the maximum evolution number. Thus, the
optimal designation located in one of these segments is easily
determined.
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public class AbYSSstudy extends Experiment {. . .
public void algorithmSettings(Problem problem, int problemIndex) {. . .

parameters [0].setProperty(“POPULATION SIZE”, “50”);
parameters [0].setProperty(“MAX EVOLUTIONS”, “500”);
parameters [0].setProperty(“REF SET1 SIZE”, “20”);
parameters [0].setProperty(“REF SET2 SIZE”, “20”);
parameters [0].setProperty(“ARCHIVE SIZE”, “40”);
parameters [0].setProperty(“CROSSOVER PROBABILITY”,

“1.00”);
parameters [0].setProperty(“MUTATION PROBABILITY”,

“1.00”);
parameters [0].setProperty(“IMPROVEMENT ROUNDS”, “1”);

. . . }
public static void main(String[] args) throws JMException,
IOException {. . .

exp.experimentName = “AbYSSstudy”;
exp.algorithmNameList =newString []

{“AbYSSa”,“AbYSSb”,“AbYSSc”,“AbYSSd”,“AbYSSe”,“AbYSSf ”,“AbYS
Sg”,“AbYSSh”,“AbYSSi”,“AbYSSl”,“AbYSSm”,“AbYSSn”,“AbYSSo”,“A
bYSSp”,“AbYSSr”,“AbYSSs”};

exp.problemList = new String[]{“example1”};
exp.paretoFrontFile = new String[]{“example1.pf ” };
exp.indicatorList = new String[]{“HV”, “SPREAD”, “IGD”,

“EPSILON”};. . .
exp.independentRuns = 10; }}

public class example1 extends Problem {
public example1(String solutionType) {

numberOfVariables = 5;
numberOfObjectives = 2;
numberOfConstraints = 5;
problemName = “example1”;
lowerLimit = new double[numberOfVariables ];
upperLimit = new double[numberOfVariables ];
lowerLimit [0] = 1;
lowerLimit [1] = 1;
upperLimit [0] = 274;
upperLimit [1] = 274;
variableType = new VariableType [numberOfVariables ];
length = new int[numberOfVariables ];
length = new int[numberOfVariables ];
solutionType = Enum.valueOf(VariableType .class,

“SolutionType”);
for (int var = 0; var < numberOfVariables ; var ++){
variableType [var] = Enum.valueOf(VariableType .class,

solutionType);
length [var] = numberOfBits;
}

}
public example1 (){
}
public void evaluate(Solution solution) throws JMException {
. . . }
public void evaluateConstraints(Solution solution) throws
JMException {
. . . }

Algorithm 5: An example input for AbYSS algorithm coded in Java.

6.1. Design Example 1: A Grid System with 4 and 3 Bays.
This simple grillage system depicted in Figure 3 has four
longitudinal and three lateral bays. Grid members of grillage
system in x and y directions are linked into two separate
groups: grid members (1–16) as design variable 1, grid
members (17–32) as design variable 2, grid members (33–
44) as design variable 3, grid members (45–56) as design

variable 4, grid members (57–68) as design variable 5.
Lengths of spans are l1 = 10.500 ft (3.2004 m), l2 =
11.500 ft (3.5052 m), l3 = 12.000 ft (3.6576 m), l4 = 9.250 ft
(3.6576 m), l5 = 13.250 ft (4.0386 m), l6 = 12.500 ft (3.81 m),
and l7 = 10.000 ft (3.048 m). Magnitudes of loads are
taken as 17.9847 kipf (80.00 kN) for P1 and P4, 20.2328 kipf
(90.00 kN) for P2 and P5, 17.9847 kipf (80.00 kN) for P2
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Table 3: Values of measurement quantities obtained by “Eval. Number = 5,000” and “Pop. Size = 100” for design example 1.

C. no.
IGD HV Spread

AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII

Means

1 0.0452 0.0382 0.0278 0.0435 0.9280 0.9521 0.9352 0.9029 0.8147 0.9293 0.9049 0.9203

2 0.0304 0.0324 0.0309 0.0274 0.9356 0.9106 0.9467 0.9490 0.9058 0.9172 0.9289 0.8819

3 0.0246 0.0443 0.0393 0.0346 0.9863 0.9789 0.9849 0.9414 0.8067 0.8827 0.8683 0.8555

4 0.0261 0.0286 0.0247 0.0135 0.9117 0.9079 0.9540 0.9862 0.9157 0.9106 0.9133 0.8469

5 0.0247 0.0418 0.0336 0.0442 0.9684 0.9013 0.9577 0.9145 0.8491 0.9027 0.9037 0.8797

6 0.0430 0.0388 0.0439 0.0160 0.9652 0.9160 0.9203 0.9715 0.8235 0.9001 0.8909 0.8754

7 0.0250 0.0316 0.0356 0.0419 0.9408 0.9140 0.9574 0.9196 0.8909 0.9294 0.9047 0.9160

8 0.0423 0.0299 0.0402 0.0415 0.9724 0.9668 0.9738 0.9141 0.8407 0.9234 0.8865 0.9174

Standard deviations corresponding to best means and assessment of significance levels according to statistical tests

0.0011 0.0018 0.0045 0.0008 0.0024 0.0034 0.0048 0.0012 0.0028 0.0047 0.0084 0.0053
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Figure 9: Convergence history obtained by AbYSS (Case 1).

and P5, 15.7366 kipf (70.00 kN) for P3, and 16.8606 kipf
(75.00 kN) for P6. The value of allowable displacement is
constrained as (13.25/300 = 0.0441 ft; 13.4416 mm).

The pareto fronts of a set of random Nondominated
solutions obtained by both use of an increased population
size and evolution number and AbYSS, NSGAII, PESAII, and
SPEAII are depicted in Figures 4(a) and 4(b1)–4(b4). The
means of quality indicator values, standard deviations values
corresponding to best means, and assessment of significance
levels according to statistical tests are presented in Tables 2
and 3. Considering Tables 2 and 3, an increase in the evolu-
tion number and population size leads to an improvement in
the values of quality indicator, in other words, an increase in
the convergence degree of optimal designations. According
to assessment of statistical analysis results corresponding
to the lower evolution number and population size, it
is clear that there is not a statistical confidence among
proposed MOAs. The best values of quality indicators are
obtained by AbYSS. SPEAII and PESAII exhibits better
computational performance compared to NSGAII. It is also
observed that an increase in the evolution number and
population size forces MOAs to use higher values of operator
parameter for improvement of their optimal designation
qualities. This result is confirmed by examining the values
of quality indicators with bold and italic characters. These

higher quality indicator values are obtained by Cases 1–
4, which indicate a usage of lower evolution number and
population size and Cases 5–8, which indicate a usage of
higher evolution number and population size. Considering
the best spread values, the pareto fronts obtained by four
MOAs employed are compared with both each other and the
pareto front obtained by use of higher population size and
evolution number (Figures 4(b1)–4(b4)). The convergence
history of the optimizer AbYSS (Case 3) with the best spread
value 0.8067 is presented in Figure 5 with two axes. A
designation with (weight = 5446.1415 lb (2470.3282 kg) and
displacement = 0.0406 ft (12.3748 mm)) is obtained in a
generation of no. = 4638 located in a segment of no. 92 with
an interval (90× 50 = 4500 and 100× 50 = 5000).

The strength values of grid members are displayed con-
sidering penalized designation corresponding to a max-
imum displacement (weight = 18128.2500 lb (8222.835 kg)
and displacement = 0.3977 ft (121.2189 mm); see
Figures 6(a1)–6(a5)) and unpenalized designations
corresponding to a maximum displacement (weight
= 17095.5000 lb (7754.3883 kg) and displacement =
0.0068 ft (2.0721 mm)) and a maximum weight (weight
= 74672.5000 lb (33870.8762 kg) and displacement =
0.0002 ft (0.0609 mm); see Figures 6(b1)–6(b5) and 6(c1)–
6(c5)). Whereas the penalized designation corresponding
to the maximum displacement contains a W-section set
(W30×292, W6×12, W27×235, W6×12, and W8×15), the
unpenalized designations corresponding to the maximum
displacement and weight are represented by W-section
sets (W24×68, W30×124, W27×129, and W30×148)
and (W14×370, W14×455, W36×529, W36×652, and
W36×361), respectively. The most critical strength values
of penalized designation satisfied none of the constraints
is obtained by both torsional and flange buckling-related
constraints (see Figures 6(a1)–6(a5)). Examining the
strength values depicted in Figures 6(b1)–6(b5) and
6(c1)–6(c5), limit state values of unpenalized designations
corresponding to the maximum weight are higher than one
corresponding to the maximum displacement due to a usage
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Figure 10: Strengths and displacements of random penalized solutions corresponding to minimum displacement (a1)–(a5), unpenalized
solutions corresponding to maximum displacement (b1)–(b5), and maximum weight (c1)–(c5) (see Figure 9).

of the bigger cross-sectional properties for design variables.
Furthermore, a common point of these strengths obtained
by both panelized and unpenalized solutions corresponding
to the maximum displacement is that the yielding limit
state has a big impact on the flange buckling, torsional and
yielding strengths (see Figures 6(a1), 6(a4), and 6(a5) and
6(b1), 6(b4), and 6(b5)).

6.2. Design Example 2: A Grid System with Five Bays. A
grillage system with 160 grid members and 152 nodes
is shown in Figure 7. This grillage system is almost 10-
times larger than first design example. Grid members are
linked in 8 separate groups, resulting in total four design
variables in x direction and total four design variables in
y direction. According to this linkage system, members (1–
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Table 4: Values of measurement quantities obtained by “Eval. Number = 1,000” and “Pop. Size = 50” for design example 2.

C. no.
IGD HV Spread

AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII

Means

1 0.2691 0.6444 0.6619 0.2648 0.7136 0.3225 0.8378 0.5906 0.9937 0.9823 0.9574 0.9883

2 0.1887 0.6476 0.3502 0.3181 0.6183 0.5523 0.7391 0.6604 0.9329 0.9789 0.9246 0.9962

3 0.2875 0.6790 0.6620 0.1192 0.3433 0.5493 0.3569 0.3488 0.9727 0.9884 0.9861 0.9713

4 0.0911 0.6358 0.4162 0.6456 0.1248 0.3304 0.6627 0.4513 0.9493 0.9995 0.9891 0.9223

5 0.0156 0.7093 0.2564 0.4795 0.9158 0.3606 0.2815 0.2409 0.9206 0.9954 0.9394 0.9345

6 0.6834 0.2583 0.6135 0.6393 0.6465 0.6158 0.2304 0.7150 0.9296 0.9879 0.9397 0.9976

7 0.5466 0.4501 0.0118 0.5447 0.8332 0.4923 0.7111 0.8767 0.9889 0.9828 0.9295 0.9274

8 0.4257 0.4587 0.5407 0.0239 0.3983 0.3278 0.8968 0.2815 0.9900 0.9970 0.9456 0.9154

Standard deviations corresponding to best means and assessment of significance levels according to statistical tests

0.0113 0.0087 0.0081 0.0105 0.0101 0.0086 0.0078 0.0118 0.0146 0.0127 0.0134 0.0132

(−) (−) (+)

Table 5: Values of measurement quantities obtained by “Eval. Number = 5,000” and “Pop. Size = 100” for design example 2.

C. no.
IGD HV Spread

AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII

Means

1 0.0078 0.0205 0.0196 0.0144 0.8935 0.4759 0.6101 0.3714 0.8356 0.9425 0.9759 0.9108

2 0.0154 0.0216 0.0073 0.0206 0.4658 0.9278 0.2036 0.4564 0.9852 0.9998 0.8627 0.8852

3 0.0155 0.0182 0.0098 0.0198 0.9419 0.6556 0.9395 0.9400 0.8749 0.9976 0.9044 0.8672

4 0.0196 0.0193 0.0071 0.0161 0.4945 0.6204 0.8622 0.7424 0.8564 0.9875 0.8359 0.9132

5 0.0170 0.0216 0.0167 0.0072 0.8976 0.2828 0.4429 0.9374 0.8998 0.9508 0.8497 0.9224

6 0.0133 0.0100 0.0093 0.0102 0.2886 0.2052 0.5480 0.5134 0.8705 0.9820 0.9869 0.8844

7 0.0103 0.0117 0.0086 0.0089 0.2690 0.4391 0.5669 0.2409 0.8648 0.9926 0.9053 0.9773

8 0.0088 0.0156 0.0172 0.0149 0.5942 0.8762 0.6804 0.2600 0.8942 0.9521 0.9316 0.8775

Standard deviations corresponding to best means and assessment of significance levels according to statistical tests

0.0048 0.0064 0.0027 0.0062 0.0038 0.0075 0.0074 0.0062 0.0880 0.0101 0.0980 0.0992

(+) (−) (+)

Table 6: Values of measurement quantities obtained by “Eval. Number = 1,000” and “Pop. Size = 50” for design example 3.

C. no.
IGD HV Spread

AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII

Means

1 0.7590 0.6401 0.3972 0.3320 0.7128 0.2029 0.1523 0.1647 0.9763 0.9998 0.9883 0.9851

2 0.9933 0.6522 0.4794 0.7487 0.8256 0.5898 0.3523 0.2716 0.9929 0.9984 0.9962 0.9903

3 0.3567 0.8270 0.5650 0.6444 0.9485 0.3551 0.9373 0.3144 0.9904 0.9999 0.9856 0.9965

4 0.7529 0.8842 0.4896 0.1692 0.6894 0.5478 0.9319 0.6061 0.9678 0.9984 0.9941 0.9705

5 0.0258 0.7006 0.2698 0.9522 0.5309 0.2025 0.7388 0.6775 0.9764 0.9986 0.9880 0.9710

6 0.5970 0.4879 0.9897 0.5433 0.1889 0.5132 0.7572 0.7575 0.9869 0.9979 0.9997 0.9827

7 0.4306 0.9367 0.1837 0.0358 0.4930 0.5698 0.4635 0.9287 0.9685 0.9978 0.9938 0.9714

8 0.7307 0.8602 0.0204 0.5786 0.5595 0.3736 0.8420 0.4111 0.9761 0.9986 0.9960 0.9804

Standard deviations corresponding to best means and assessment of significance levels according to statistical tests

0.0205 0.0258 0.0227 0.0187 0.0403 0.0327 0.0512 0.0209 0.0208 0.0158 0.0257 0.0128

(−) (−) (−)
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Figure 11: Geometry of 236-member grid structure including locations of point loads.

Table 7: Values of measurement quantities obtained by “Eval. Number = 5,000” and “Pop. Size = 100” for design example 3.

C. no.
IGD HV Spread

AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII AbYSS NSGAII PESAII SPEAII

Means

1 0.0101 0.0225 0.0198 0.0157 0.9657 0.9199 0.8154 0.8459 0.8168 0.9494 0.8772 0.8885

2 0.0180 0.0180 0.0195 0.0213 0.9229 0.9360 0.9430 0.9070 0.9554 0.9498 0.9281 0.9461

3 0.0158 0.0184 0.0233 0.0140 0.9174 0.8776 0.9623 0.9582 0.8481 0.9586 0.8806 0.9272

4 0.0180 0.0198 0.0124 0.0148 0.9292 0.9475 0.8601 0.9626 0.9224 0.9556 0.8939 0.9258

5 0.0154 0.0223 0.0212 0.0174 0.8212 0.9346 0.9198 0.8180 0.9369 0.9527 0.9491 0.9320

6 0.0149 0.0192 0.0164 0.0148 0.8577 0.9592 0.8790 0.9425 0.9531 0.9583 0.8998 0.9146

7 0.0204 0.0207 0.0153 0.0143 0.8389 0.9020 0.8794 0.8513 0.8995 0.9581 0.9249 0.9582

8 0.0102 0.0193 0.0192 0.0215 0.8378 0.8793 0.8332 0.8653 0.9040 0.9499 0.9373 0.8886

Standard deviations corresponding to best means and assessment of significance levels according to statistical tests

0.0079 0.0084 0.0128 0.0162 0.0138 0.0174 0.0181 0.0219 0.0142 0.0209 0.0251 0.0326

(+) (−) (+)

20), (21–40), (41–60), (61–80), (81–100), (101–120), (121–
140), and (141–160) are linked to represent design variables
1, 2, 3, . . . , 8 respectively. Magnitude of loads P1–P16 is equal
to 49.46 kipf (219.998 kN). Lengths of spans are l1 = l2 =
l4 = l5 = 7.220 ft (2.200 m), l3 = 8.220 ft (2.505 m),
l6 = l7 = l8 = l9 = l10 = 7.870 ft (2.398 m). The
value of allowable displacement is constrained as (8.22/300
= 0.0274 ft; 8.3515 mm).

The pareto fronts of a set of random Nondominated
solutions obtained by both use of an increased population
size and evolution number and AbYSS, NSGAII, PESAII,
and SPEAII are depicted in Figures 8(a) and 8(b1)–8(b4).

The means of quality indicator values, standard deviations
values corresponding to best means and assessment of
significance levels according to statistical tests are reported
in Tables 4 and 5. Examining the values of quality indicators
tabulated in Tables 4 and 5, it is seen that the lower evolution
number and population size decrease the quality degree
of optimal designations leading to obtain an inconsistent
statistical confidence among quality indicators. However, the
quality degree of optimal designations is elevated associated
by an increase in the evolution number and population size.
According to the quality indicator values, AbYSS (Case 1)
succeeded to obtain a lower spread 0.8356 and a higher
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Figure 12: Pareto fronts of a set of random nondominated solutions obtained by use of an increased population size and evolution number
(a) and AbYSS, NSGAII, PESAII, and SPEAII (b1)–(b4).
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Figure 13: Convergence history obtained by AbYSS (Case 1).

hyper-volume value 0.9419 compared to NSGAII, PESAII,
and SPEAII. It is also observed that a higher optimality
degree is obtained by use of either lower parameter values
of evolutionary operators in conjunction with a decreased
evolution number and population size or higher ones in
conjunction with an increased evolution number a popula-
tion size. This claim is approved by examining the quality
indicator values with bold and italic characters obtained by
Cases 1–4, which indicate a usage of lower evolution number
and population size and Cases 5–8, which indicate a usage of
higher evolution number and population size (see Tables 4
and 5). Considering the best spread values, the pareto fronts
obtained by four MOAs employed are compared with both
each other and the pareto front obtained by use of higher
population size and evolution number (Figure 8(b1)–8(b4)).
The convergence history of the optimizer AbYSS (Case 1)
with the best spread value 0.8067 is presented in Figure 9
with two axes. A designation with (weight = 13584.2465 lb
(6161.7105 kg) and displacement = 0.0798 ft (24.3230 mm))
is obtained in a generation of no. = 4257 located in a segment
of no. 85 with an interval (80 × 50 = 4000 and 90 × 50 =
4500).

The strength values of grid members are displayed
considering penalized designation corresponding to a max-
imum displacement (weight = 9888.9999 lb (4485.5749 kg)
and displacement = 0.1633 ft (49.7738 mm); see Figure 10
(a1)–10(a5)) and unpenalized designations corresponding
to a maximum displacement (weight = 32718.4000 lb
(14840.8165 kg) and displacement = 0.0125 ft (3.81 mm))
and a maximum weight (weight = 102588.7500 lb
(46533.4742 kg) and displacement = 0.0025 ft (0.762 mm);
see Figures 10(b1)–10(b5) and 10(c1)–10(c5)). Whereas
the penalized designation corresponding to the maximum
displacement contains a W-section set (W14×38, W12×45,
W12×53, W18×55, W12×22, W6×8.5, W6×20, and
W18×71), the unpenalized designations corresponding to
the maximum displacement and weight are represented
by W-section sets (W12×87, W24×131, W33×152,
W10×112, W24×131, W12×170, W21×132, W14×132) and
(W40×149, W12×210, W36×441, W36×529, W36×395,
W36×330, W36×361, and W27×194), respectively. An
increase in the displacement values causes convergence in
the flange bucking, torsional, and yielding-related strength

values to their related yielding limit values. Hence, the
distribution of these strengths on the grid members becomes
more close to their limit state values (see Figure 10(a1),
10(a4) and 10(a5) and 10(b1), 10(b4), and 10(b5)). An
increase in the weight of grid structure leads to an elevation
in the limit state values (see Figure 10(c1)–10(c5)).

6.3. Design Example 3: A Grid System with Five and Six
Bays. This grillage system with 236 members and 219 joint
points has the highest complexity among design examples
due to both lower number of support points constructed to
carry a large grillage area and higher number of
members and joints (see Figure 11). Grid members (1–
20), (21–40), (41–60), (61–80), (81–100), (101–120),
and (121–140) are linked to represent design variables
1, 2, . . . , 7 in x direction while design variables 8, 9, 10,
and 11 in y direction are assigned to lattice beams
which are denoted by (141, 145, 149, . . . , 221, 225, 229,
and 233), (142, 146, 150, . . . , 222, 226, 230, and 234),
(143, 147, 151, . . . , 223, 227, 231, and 235), and (144, 148,
152, . . . , 224, 228, 232, and 236). Magnitude of loads (P1–P4

and P25–P28), (P5–P8 and P21–P24), (P9–P12 and P17–P20),
and (P13–P16) are taken as 24.730 kipf (109.999 kN),
35.970 kipf (159.995 kN), 38.210 kipf (169.959 kN) and
42.710 kipf (189.974 kN). Lengths of spans are equal to
l1 = l5 = 7.550 ft (2.30 m), l2 = l4 = l6 = l11 = 7.870 ft
(2.399 m), l3 = 8.200 ft (2.499 m), l7 = l10 = 8.530 ft
(2.599 m), and l8 = l9 = 9.180 ft (2.798 m). The value
of allowable displacement is constrained as (9.18/300 =
0.0306 ft; 9.3268 mm).

The pareto fronts of a set of random Nondominated
solutions obtained by both use of an increased population
size and evolution number and AbYSS, NSGAII, PESAII, and
SPEAII are depicted in Figures 12(a) and 12(b1)–12(b4).
The quality indicator related-quantities including statistical
test results are reported in Tables 6 and 7. According to
tabulated valued in Tables 6 and 7, a decrease in the evolution
number and population size causes the quality indicator
values to be poor and hence statistical confidence to be
inconsistent. Considering the indicator values in Table 7, it is
obvious that AbYSS (Case 1) shows a better computational
performance by obtaining a lower spread 0.8168 and a
higher hyper-volume value 0.9657 compared to NSGAII,
PESAII, and SPEAII. Also, the quality indicators obtained by
PESAII and SPEAII are better than NSGAII. According to the
convergence history of AbYSS (Case 1) with the best spread
value 0.8168 presented in Figure 13, a designation with
(weight = 22354.1046 lb (10139.6512 kg) and displacement
= 0.2331 ft (71.0488 mm)) is obtained in a generation of
no. = 4461 located in a segment of no. 89 with a interval
(80× 50 = 4000 and 90× 50 = 4500).

The strength values of grid members are displayed
considering penalized designation corresponding to a maxi-
mum displacement (weight = 36375.3700 lb (16499.5902 kg)
and displacement = 0.7651 ft (233.2024 mm); see Figure 14
(a1)–14(a5)) and unpenalized designations corresponding to
a maximum displacement (weight = 44028.4600 lb
(19970.9735 kg) and displacement = 0.02142 ft (6.528 mm))
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Figure 14: Strengths and displacements of random penalized solutions corresponding to minimum displacement (a1)–(a5), unpenalized
solutions corresponding to maximum displacement (b1)–(b5), and maximum weight (c1)–(c5) (see Figure 13).

and a maximum weight (weight = 176334.6800 lb
(79984.0654 kg) and displacement = 0.0066 ft (2.0116 mm);
see Figures 14(b1)–14(b5) and 14(c1)–14(c5)). Whereas
the penalized designation corresponding to the maximum
displacement contains a W-section set (W16×40, W12×45,

W30×391, W14×30, W12×30, W12×19, W8×15, W12×96,
W18×175, W10×39, and W30×116), the unpenalized
designations corresponding to the maximum displacement
and weight are represented by W-section sets (W18×106,
W18×106, W18×106, W12×170, W18×106, W18×106,
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W18×106, W18×97, W21×122, W21×122, and W18×97),
and (W40×503, W12×305, W14×500, W14×730,
W14×550, W40×278, W16×100, W36×361, W14×665,
W40×593, and W14×311), respectively. Examining
Figure 14(a1)–14(a5), it is seen that torsional and yielding
strengths play a bigger and more important role in the
bearing capacity of grid structure compared to the other
strengths. A similar result as in the application of design
examples 1 and 2 is obtained in this application example:
a decrease in the displacement values causes the flange
bucking, torsional, and yielding-related strengths to obtain
highly near to their related yielding limit state values. Using
the steel profiles with larger cross-sectional properties leads
to an increase in both weight of grid structure and limit state
values.

7. Conclusion

In this study, the designs of grillage systems are opti-
mized using the optimization tools named NSGAII, SPEAII,
PESAII, and AbYSSS according to the design provisions of
LRFD-AISC Ver.13 specification. Hence, the computational
performances of the MOAs employed are not only evaluated
but the change in the strength of gird members in conjunc-
tion with joint displacements is also displayed. In order to
assess the computational performance of MOAs, the various
quality indicators, IGD, HV, and spread are computed
considering the application of three design examples with
an order of increasing complexity degree and evaluated their
statistical confidences according to outcomes of statistical
tests. According to the evaluation of quality indicators and
optimal designations, the following results are observed.

(i) According to the values of quality indicators, AbYSS
shows better computational performance compared
to SPEAII, PESAII, and NSGAII. Moreover, NSGAII
obtains the worst values of quality indicators than
SPEAII and PESAII, whose computational perfor-
mances are almost equal.

(ii) An efficient exploration of search space is only
provided by usage of an increased evolution number
and population size. Otherwise, the outcomes from
statistical tests point out an inconsistent relation
between quality indicators obtained by use of a
decreased evolution number and population size.

(iii) An increase in the parameter values of evolutionary
operators in conjunction with the evolution number
and population size leads to an improvement in the
convergence degree of optimal designations.

(iv) In conjunction with increasing the evolution number
and populations size, the degrees of quality indicators
are improved by use of (higher crossover probability
and crossover distribution index—higher mutation
probability and mutation distribution index—higher
reference sets and archive size) for the evolutionary
operators of AbYSS, and (lower crossover probability
and crossover distribution index—lower mutation
probability and mutation distribution index—higher

archive size) or (higher crossover probability and
crossover distribution index—lower mutation proba-
bility and mutation distribution index—higher archive
size) for the evolutionary operators of SPEAII and
PESAII.

(v) A decrease in the joint displacement correspondingly
causes the values of flange buckling, torsional, and
yielding strengths to obtain near to their related limit
state values. In this regard, the bearing capacity of
grid structure has to be kept in the upper levels
against any drastic decrease in joint displacements.
Therefore, using a multi-objective optimization algo-
rithm becomes a reasonable approach for the optimal
design of grillage systems.

In the next work, the effect of using the different
evolutionary parameter values on the quality degree of
optimal designations will be evaluated. Furthermore, the
proposed MOAs will be hybridized with both each other and
the other evolutionary optimization algorithms in order to
both reduce the evolutionary computational cost spent to
obtain Nondominated solutions and improve the curves of
pareto fronts.

Nomenclature for AISC LRFD Ver.13
Specification

b f : Flange width
Cb: Lateral-torsional buckling modification

factor for non-uniform moment diagrams
E: Elasticity modules
Fcr: Critical stress
Fy : Specified minimum yield stress
h: Clear distance between flanges
h0: Distance between flange centroids
Iy : Out-of-plane moment of Inertia
Jc: Torsional constant
kc: Coefficient for slender unstiffened elements
kv: Web-plate buckling coefficient
Lp: Limiting laterally unbraced length for the

limit state of yielding
Lb: Distance between braces
Lr : Limiting laterally unbraced length for the

limit state of inelastic lateral-torsional
buckling

Mn: Nominal flexural strength
Mp: Plastic bending moment
MA: Absolute value of monet at quarter point of

unbraced segment
MB: Absolute value of monet at centerline point

of unbraced segment
MC : Absolute value of monet at three-quarter

point of unbraced segment
ry : Radius of gyration about y-axes
rts: Effective radius of gyration used in the

determination of Lr for lateral-torsional
buckling limit state

Sx: Elastic section modules about principal axes
t f : Thickness of flange
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tw: Web thickness
Zx: Plastic section modules about principal axes
λp: Limiting slenderness parameter for compact

element
λp f : Limiting slenderness parameter for compact

flange
λr f : Limiting slenderness parameter for compact

web
λ: Slenderness parameter.
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