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Abstract. This paper discusses the effect of global stability on the optimal size
and shape of truss structures taking into account of a nonlinear critical load, truss
weight and serviceability at the same time. The nonlinear critical load is computed
by arc-length method. In order to increase the accuracy of the estimation of critical
load (ignoring material nonlinearity), an eigenvalue analysis is implemented into the
arc-length method. Furthermore, a pure pareto-ranking based multi-objective opti-
mization model is employed for the design optimization of the truss structure with
multiple objectives. The computational performance of the optimization model is
increased by implementing an island model into its evolutionary search mechanism.
The proposed design optimization approach is applied for both size and shape opti-
mization of real world trusses including 101, 224 and 444 bars and successful in
generating feasible designations in a large and complex design space. It is observed
that the computational performance of pareto-ranking based island model is better
than the pure pareto-ranking based model. Therefore, pareto-ranking based island
model is recommended to optimize the design of truss structure possessing geometric
nonlinearity.

Keywords. Nonlinear critical load; multi-objective optimization; island models;
genetic algorithm; arc-length method.

1. Introduction

The stability strength of a truss structure is generally determined according to the magnitude of
its linear buckling load computed by a local stability design method. Khot et al (1976) optimized
the design of truss structures considering its linear buckling load. For this purpose, they utilized
an optimality criteria approach in their design applications. In this regard, new optimization
applications making use of the linear buckling load were also developed for structural design
problems (Lin & Liu 1989). However, it was shown that a local stability analysis overestimates
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the buckling load (Levy et al 2004). Therefore, the concept of global stability based on the
computation of the nonlinear buckling load, also defined as nonlinear critical load or just critical
load, was introduced into the stability-based design optimization (Levy et al 2004).

Plaut et al (1984) optimized the design of a small-scale truss taking into account of a critical
load computed by use of a nonlinear buckling analysis. Khot & Kamat (1985) utilized a potential
energy concept for their stability-based design optimization procedure. Kamat e al (1984) used
an optimality criteria approach for optimal design of truss structures by imposing a uniform
strain energy density to all truss members to obtain a maximum critical load.

Levy & Perng (1988) developed a two-phase optimization algorithm: a critical load was esti-
mated for a specified external load; the truss structure was re-designed using an optimality
criteria approach.

Levy (1994a and 1994b) showed that the values of member cross-sectional areas con-
verged to a unique value at the end of optimization where geometric nonlinearity is taken into
consideration.

Sedaghati & Tabarrok (2000) proposed an optimality criteria approach for truss structures
which exhibit snap-through and snap-back behaviour. Their optimization approach was based on
imposing a uniform strain energy density to all truss members.

Another challenging optimization approach was based on using the design sensitivity infor-
mation, which is obtained from the nonlinear structural analysis, for optimal design of truss
structures. Cardoso & Arora (1988) minimized the weight of truss structures utilizing its design
sensitivity information. Choi & Santos (1987) and Santos & Choi (1988) obtained the design
sensitivity information using the virtual work principle. Ohsaki (2001) proposed a similar
approach based on the computation of sensitivity coefficients considering the critical loads of
truss structures. Ohsaki & Ikeda (2006) attempted to compute the sensitivity coefficients con-
sidering some critical loads, which were indicated by bifurcated or branched points located in
a load-displacement curve and defined as bifurcation point, degenerate critical point and hill-
top branching point. Furthermore, they also showed that computation of sensitivity coefficients
failed when iterative progression was terminated due to computational problem related to the
singularity of determinants or when an inappropriate objective function was used to evaluate the
sensitivity coefficients (Ohsaki 2005). In order to deal with this matter, certain joint deflections
were constrained to move in specified directions at a predefined upper limit.

In this study, the design of truss structures is optimized considering the critical load which is
computed by arc-length method based on iteratively adjusting the system rigidity matrix for trac-
ing a load-displacement path. The arc-length method is also improved by including an eigenvalue
analysis in its iterative algorithm in order to accurately estimate the critical load. Because of the
negative effect of large joint deflections on the serviceability of truss structures, a new objec-
tive function related to joint displacements is included into optimization procedure. Although
the weight of truss structure is an important factor for economical reasons, a higher critical
load indicates larger stability strength for that truss structure. Therefore, a total of three objec-
tive functions are employed both to minimize the joint displacement and entire weight and to
maximize the critical load of the truss structure. A pure pareto-ranking based multi-objective
optimization model is employed in the optimization procedure. In order to increase the com-
putational capacity of this optimization model, an island model, developed originally for the
parallelization of evolutionary algorithms, is implemented into its search mechanism.

This paper is organized as follows. First, the fundamentals of arc-length method are presented.
Next, the verification of arc-length method is demonstrated with two examples. Then, the pareto
ranking-based multi-objective model and the island model are briefly described along with an
introduction to the optimum design procedure. A search methodology is introduced for the
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evaluation of the two multi-objective optimization models and execution of arc-length method.
The discussion of results and the conclusions are also provided.

2. Arc-length method

The ultimate-load carrying capacity of a truss structure is determined by estimating the critical
loads. But, the estimation of critical loads is difficult when a truss structure exhibits snap-through
or snap-back behaviour. A discontinuity on the load-displacement path arises when the system
rigidity matrix becomes indefinite; this prevents a further iterative progression in the estimation
of critical loads. Therefore, the efficiency of any nonlinear solution method is measured by its
capability of estimating all critical points. Arc-length method is proven to be efficient in the esti-
mation of both the bifurcation and branching points (Kouhia & Mikkola 1999). Thus, arc-length
method is improved by implementing new strategies in its computational procedure. (Summary
of recent improvements for the arc-length method can be seen in references (Kouhia & Mikkola
1999; Memon & Su 2004; Ritto-Correa & Camotim 2008).

One such effective improvement is based on utilizing a constraint equation for the deter-
mination of incremental nodal displacements; hence a successful tracing is provided for the
load-displacement path (Crisfield 1997). However, the constraint equation is represented by a
quadratic form; when an inappropriate root is used for the constraint equation, the computational
procedure fails. In order to overcome this difficulty, Krenk (1995) developed an alternative tech-
nique, called orthogonal residual method. The orthogonal residual method is based on adjusting
a load increment for iterative procedures in a way of checking the orthogonality of residual force
to current displacement increment (see figure 1). In this study, Krenk’s arc-length method is
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Figure 1. Iterative and incremental processes performing on load-deflection path.
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utilized to estimate the critical load (see figure 2). The formulation of element stiffness matrix
for a truss bar is presented in Magnusson (2006).

Some determinant-related criteria are of importance for the computation of critical loads by
arc-length method. These are

(i) Determinant of tangent stiffness matrix, det[K].
(i) Minimum pivot of tangent stiffness matrix, min_piv[K].
(ii1) Minimum eigenvalue of tangent stiffness matrix, min_eig[K].

Although there are different possibilities of how the critical points are computed by the
determinant-related criteria, the choice of det[K] may be inappropriate either due to the possi-
bility of missing some points that represent the critical loads or due to the numerical problems
associated with the computer program (Rezaiee-Rojand & Vejdari-Nogreiyan 2006). Therefore,

Initialization of some parameters for incremental and iterative stage

Stage of increment
for j=1:inc_max

1i. Compute /K] using 6/
1ii. 02=[K]" * Dowt
liii.  Normalize 02,  for  first incremental stage and  calculate /&
f=(normalize(62;-,)/(normalize(2)
Liv. Calculate 03 for beginning of iterative procedure:
03 =p4%02

Iterative Stage
fori=1:it_max

2i. Compute p;,, using 0/+03

2ii. 1= B* pes + Pini= P

2iii. Update /K] using r

2iv. 04 = [K] *r

2v. Bl = -(54* 53/ 53*52)

2vi. 05 =04 + Bl *92

2vii. 3= 03 + 65

2viii. = B+ Bl
if normalize p;, < € * py
STOP
else
02=02/2, 63= 02, Pext = Pext/ 2
end
end

Iv. 01 =901 + 93

Wi.p=p+ B*Ppeu

end

Figure 2. A pseudo code for proposed arc-length method.
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Figure 3. Mesh and geometry attributes of 24 (a) and 101 bar truss structures (b).

the best choice used as a determinant-related criterion seems to be min_eig[K]. For this purpose,
an interpolation process is utilized to determine zero eigenvalues. Eigenvalues of the tangent
stiffness matrix are monitored until a sign change in an eigenvalue is noticed. Then, the displace-
ment values are interpolated between the two values corresponding to these oppositely-signed
eigenvalues in order to find a displacement corresponding to the zero eigenvalue. It must be
noted that the point corresponding to a zero eigenvalue may not be located on the fundamental
equilibrium path.

2.1 Demonstration of arc-length method by verification examples

In order to demonstrate the arc-length procedure with eigenvalue analysis, two truss structures
with 24 and 101 bars are analysed. The 24 bar truss structure, whose elasticity modulus and
cross-sectional areas are taken as 10796 psi and 1 in? respectively, is a star-shaped dome with
a vertical load applied at its crown (figure 3a) (Wrigger et al 1988). The second verification
example is a planar arch with 101 bars, which is also vertically loaded at its crown (Crisfield

Figure 4. Post buckling plot of nonlinear responses for 24 (a) and 101 bar truss structures (b).
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Table 1. Output from execution of proposed arc-length method for 24 and 101 bar truss structures.

24 bar truss structure 101 bar truss structure

The outcome from a complete run of arc-length procedure

Load corresponding to point B (kips) 30.989 1006478.352
Disp. corresponding to point B (in.) 13.657 29.139
Elapsed time for (in second) 10.30 20.12
Total number of increment 87 154

The outcome from computation of critical load and corresponding displacement

Critical load corresponding to point A (kips) 3.332 620384.207
Critical disp. corresponding to point A (in.) 0.7756 5.5739
Elapsed time (in second) 1.98 2.24
Total number of increment 11 19
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Figure 5. Variation on both minimum eigenvalues and displacements including corresponding iteration
number for 24 (a) and 101 bar truss structures (b).
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Figure 6. Locations of critical load and corresponding displacement for 24 (a) and 101 bar truss structures

(b).
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1997; Gien 2007). Its members have an elasticity modulus of 5x 107 psi and a cross-sectional
area of 1 in? (figure 3b).

The computational procedure of the proposed arc-length method is executed allowing a
maximum error of 0.001. According to the results obtained, a load-displacement curve exhibit-
ing snap-through and snap-back behaviour is simultaneously plotted for both truss structures
(figures 4a and b). In this post-buckling graph, the values of load and displacement correspond-
ing to point B are summarized together with the computation time in table 1. It is observed that
the results obtained agree with those obtained with other approaches in Crisfield (1997); Gien
(2007).

In the second step, two sequential points with oppositely-signed eigenvalues are determined.
Then, an interpolation process between these two points is carried out until a zero eigenvalue is
obtained. The interpolation process is illustrated for both examples in figures 5a and b. Figures 6a
and b display the exact values of critical loads and related displacements (point A on the graphs)
corresponding to zero eigenvalue. The corresponding computation times and total increment
numbers are shown in table 1.

3. The solution of multiple objectives by island models

Multi-objective optimization models (MOMs) vary with respect to two key issues: sampling of
feasible solutions from a large and complex search space and assessing them according to con-
vergence degrees of their optimal designations. A MOM is performed using a set of solutions
(called pareto optimal set) simultaneously. In this regard, at each run of evolutionary optimiza-
tion algorithm, the objective is to obtain a solution, named pareto solution, satisfying conditions
of constraints lying in the feasible region. In this regard, a pareto front is represented by the
pareto solutions, each of which is not dominated by the other ones and represented by a curve,
called true pareto front. Points located on the true pareto front curve are not improved further.
The quality of current pareto front obtained in the end of a whole genetic search is assessed
according to its closeness to the true pareto front.

Evolutionary algorithms have a flexible search mechanism. In particular, they have the ability
to hybridize with a pareto-ranking based MOM (PbMOM) through both letting the pareto opti-
mal set to be handled easily and allowing the combination of multiple objectives into a single
objective function (Veldhuizen & Lamont 1998). The most popular evolutionary algorithm is the
genetic algorithm. The genetic algorithm is governed by genetic operators which mimics selec-
tion and recombination within populations in nature. The genetic algorithm has been improved
by new model implementations. One such model used in combination with the genetic algorithm
is the island model that is developed for parallelization of genetic algorithms (Cantu-Paz 1999).
It is managed by multiple populations called islands and categorized under coarse-grained mod-
els of parallel genetic algorithm. Coarse-grained models are managed by relatively few islands,
each of which have a large number of individuals. The main strength of island models is their
ability of handling multiple populations with different genetic parameters at the same time.

The islands are capable of exchanging their individuals through a transforming process called
migration (Eby et al 1999). Migration operator is governed by a predetermined communica-
tion topology that prescribes which islands can interchange individuals. Migrating individuals
(emigrants or immigrants) are determined depending on their fitness quality. The other essential
parameters of migration operator are the number of emigrants or immigrants (migration rate)
and the number of executions of the migration process (migration interval).
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In order to increase the computational performance of island models, some attempts, based on
adjusting parameter values of genetic operators, have been made Eby et al (1999) and proposed
an island model with a fixed migration frequency. Malott et al (1996) used a coarse island model
with slowly varying migration rates. One variation involves a competition which is based on
reshuffling of islands with regard to their individuals’ fitness values (Schlierkamp-Voosen and
Miihlenbein 1996). The essential parameters of competition operator are the competition rate
and interval.

4. Design problem

In order to solve the optimization problem for the geometrically nonlinear truss structures, three
objective functions are proposed. The maximization of limit load L (X), the minimization of truss
weight W (X) and joint deflection §(X). Design variables X contain cross-sectional areas A, joint
coordinates x, y and z of truss structure. It is noted that additional design variables, for example
radius of arch, distance between joints, etc. are used to define the shape of truss structures. The
problem can be formulated mathematically as

X € A, X, Y}, % i=1,...,nda),G=1,...,nn)
max L(X) = max (critical load capacity corresponding to state of det[K] = 0)
min 6(X) = min (&y) (m=1,...,nn)

ne s
min W(X) = min (Z Am*Lm*p) (m=1,...,ntm),
m=1
(D

where p, nda, nn and ntm represent material density, number of different cross-sectional areas,
nodes and truss members, respectively.

5. Optimum design procedure

Islands models have the ability of investigating the different regions of complex search space,
thereby using different parameter values for the same genetic operators. They need to be
modified for multi-objective optimization procedure. In this study, all pareto optimal solutions
computed through different objective functions are combined into a single pareto optimal set
and then ranked. These ranked values are used to both arrange the order of islands and re-
distribute the individuals to different islands. The proposed algorithm, named pareto-ranking
based multi-objective island model (PbMIM)), is detailed in figure 7.

(1) Initialize the islands by assigning randomly-generated numbers to its individuals which of
chromosomes are coded using design variables of continuous type.

(ii) Specify a combination set, which contains the cross-sectional areas and joint coordinates.

(iii)) Execute the proposed arc-length method and compute objective functions.

(iv) Execute the ranking process for values of combined fitness functions. If required, apply
the ranking share procedure based on re-scaling of fitness values according to their rank
(Goldberg & Richardson 1987).

(v) Select the individuals with higher computational performance according their fitness
values and store in the “pool of best individuals’.

(vi) Re-order the islands in a descending order with respect to fitness values (see figure 7).
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Figure 7. Depiction of the proposed island model for the design of multi-objective optimization

procedure.

(vii) Mate a randomly-chosen individuals located in different islands and apply crossover oper-
ator at pre-determined rates; choose randomly an individual and apply mutation operator at
predetermined rate (see parameters values of genetic operators in table 2) (Polheim 1998).

(viii) Select the individuals using a selection operator (see table 2) and re-create both the current
island considering these individuals and the pool of best individuals.

(ix) Migrate the individuals to the related islands using a ring-shaped migration topology
(table 2) and a migration policy which is determined by ‘the best fitness value’ obtained

from the pool of best individuals.

(x) Assign the individuals, determined by the competition operator, to the related islands

depending on the competition rate.

(xi) Replace the initial island with the current island and repeat steps 2—10 until the predeter-

mined number of generations is completed.

The computational procedure of PbMOM contains only the steps 1-4. Following the step
4, the individuals with higher computational performance are selected according to their
fitness values and used to create the next population. These steps are repeated until a pre-
determined number of generations is completed. Therefore, the search mechanism of PbMOM
is considerably simpler than PbMIM’s.

6. Search methodology

According to the traditional search methodology, the computational performances of MOMs
are assessed considering closeness of their current pareto fronts obtained to a true pareto front
known beforehand (Talaslioglu 2010). This is accomplished by utilizing the quality measuring
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metrics, which are computed using the optimal designations obtained. The accuracy of these
quality measuring metrics must be confirmed through statistical tests. Hence, a statistical test for
the evaluation of these quality-measuring metrics must be performed with a certain level of con-
fidence. Therefore, a reasonable approach is to obtain a true pareto front by runs of PbMOM and
PbMIM in bigger and repeated generation numbers. Optimal designations obtained are utilized
in computation of the quality-measuring metrics. Details of the quality-measuring metrics and
related statistical tests are presented in following sub-sections.

6.1 Quality-measuring metrics

Differentiation in MOMs architecture makes it difficult to lay down the different aspects
of MOMs’ computational performance. Therefore, quality-measuring metrics play an impor-
tant role in the accurate prediction of MOMs’ computational performance. In this study, two
fundamental quality-measuring metrics, inverted generational distance and spread are employed.

6.1a Inverted generational distance: Inverted generational distance (Igd) estimates the far of
non-dominated solutions included in current pareto front generated by the proposed MOM, from

those included in true pareto front (see Eq (2)).
n
> d?
=
IGD=1"—" )
n

where n is number of non-dominated solutions found by proposed MOM and d; is Euclidian
distance between each of these and nearest member of true pareto front. A lower value of Igd
indicates a better approximation of current pareto front obtained to the true pareto front in terms
of convergence.

6.1b Spread: This metric is used to measure an expanding spread exhibited by non-dominated
solutions obtained and computed as,

N-1 B
di+di+ Y |di —d
i=1

S= =, 3
df+di+(N—1)x*d

where d; is Euclidian distance between consecutive non-dominated solutions, d is mean of these
distances, dr and d; are distances to extreme solutions of current pareto front. A lower S value
implies points out a better distribution among non-dominated solutions. In other words, it is
implied that non-dominated solutions are located in different positions.

6.2 Statistical tests

After computing means and standard deviations of quality-measuring metrics, a statistical anal-
ysis is performed in a certain level of confidence. If a probability value resulted from a statistical
test satisfies a user defined significance level, then it is said that distribution of PbMOM and
PbMIM approximation set is acceptable.

The statistical analysis is performed using MATLAB (The MathWorks, Inc., Natick, MA,
2008) software. Firstly, the outcomes related to quality-measuring metrics are checked through
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KolmogorovSmirnov test to inspect it whether to exhibit a normal distribution at 5% (0.05)
significance level. If the variance turns out to be homogeneous, an Anova test is performed;
otherwise, a Welch test is utilized (Ortiz & Walls 2003).

7. Discussion of results

The application examples are chosen among the real-world truss applications, each of which has
a large number of truss members and a large span. The examples include an arch structure with
101 bars, a pyramid structure with 224 bars and a dome structure with 444 bars. The designs
of these truss structures are optimized considering the multiple objectives without imposing any
constraint. The design optimization of these truss structures is carried out by use of both PoMIM
and PbMOM to compare their relative computational performances. For this purpose, consid-
ering the search methodology mentioned above, a true pareto front is obtained for each design
example along with their current pareto fronts and random point sets. Then, the closeness of
their current pareto fronts to the true pareto front is measured taking the quality-measuring met-
rics into account. These quality-measuring metrics is checked by the statistical testing procedure
mentioned above. The successful multi-objective model is used for further examination of its
optimal designations.

In order to consider the shape effect on design optimization, the size and shape-related design
variables are simultaneously included in the optimal design of truss structures. Several combina-
tion sets of these design variables are devised for the size and shape-related design variables. A
maximum joint deflection of ‘max. span/300°, a serviceability requirement prescribed by AISC
(American Institute of Steel Construction), is also considered for evaluation of the optimal des-
ignations. The modulus of elasticity and density of the truss material is taken as 50 x 10° Ib/in?
and 0.1 Ib/in>.

The parameter set assigned in the arc-length method, namely ‘number of increment’, ‘the
number of iteration’, and ‘desired convergence degree’, is taken, respectively, to be (75, 75,
0.001) based on experience gained from several trial runs. Since the arc-length method is man-
aged by an iterative-based computational procedure, the magnitude of load is adjusted at each

Figure 8. Geometrical parameters used to form arc shape.
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Figure 9. True pareto front and current pareto fronts obtained by PbMIM (containing case I-1V) and
PbMOM for design example of arc structure with 101 bars.

Table 4. Statistical test results computed by use of quality-measuring metric values (arc structure
with 101 bar).

Multi-objective ~ Case Mean Std P Mean Std P
model no. (spread)  (spread)  (Welch test) (Igd) (Igd) (Welch test)
PbMIM 1 0.840 0.067 0.145  0.086

2 0.867 0.059 0.210  0.171

3 0.854 0.080 0.930 0.199  0.069 0.518

4 0.873 0.082 0.218 0.108
PbMOM 1 0.875 0.055 0.259  0.093

Mean: average of spread and Igd. Std: standard deviation of spread and Igd
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Table 5. Genetic output obtained by execution of PbMIM for arc structure with 101 bar (see table 3).

Case I Case I Case III Case IV
Min. weight (1b) (Fitness fun. 1) 1017.8264 2690.9995 1974.8400 32.8973
Min disp (in) (Fitness fun. 2)* 0.2180 0.9026 0.3190 5.6317
Max. crit. load (Ib) (Fitness fun. 3) 2044363.4099 1066399.8177 1597224.3750 696366.7552
No. of increments 19 20 25 23
No. of iteration for last increment 10 12 14 12
Mean fitness Values (Ib)  Fitness fun 1 2307.2134 2025.6656 2631.5167 1123.2807
Fitness fun 2 24115 2.8443 2.9010 2.7825
Fitness fun 3 1883125.5520 1873942.1765 2242967.7266 1422018.8589
Standard deviation Fitness fun 1 839.2990 1389.0367 1282.8348 1599.1873
of fitness values Fitness fun 2 2.0594 1.7065 1.7740 2.2449

Fitness fun3  851568.5236  897190.8531 899561.2363 937744.2370

*Computed at apex of arc structure

Figure 10. Optimal shapes of arc structure with 101 bar obtained by use of design variables represented
by case I (a), case II (b), case III (¢), case IV (d).
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Figure 11. Variation of displacement and critical load at apex with weight of arc structure with 101 bar.

iteration according to the incremental procedure (see section 2). Therefore, the magnitudes of
loads imposed to truss examples are not presented.

The computational optimization involving the optimization procedure and the structural
analysis is coded within MATLAB software.

7.1 Application example 1: Arc structure with 101 bar

This arch structure was firstly used to test the computational performance of Crisfield” arc-length
method (Crisfield 1997). In this study, it is tackled to both verify the accuracy of proposed
arc-length method and demonstrate the efficiency of PbMIM and PbMOM with various design
variable sets. This truss has a vertical load at the apex (figure 3b).

The cross-sectional area of each member, denoted by A is used to represent ‘size-related
design variable’. The ‘shape-related design variables’ are the ‘radius of arch segments’ R, the
‘length of radial member of the arch’ a and the ‘angle between two sequential arch segments’
B. Four different sets of design variables are represented by Case I-IV (table 3). The shape-
related design variables AREAI-AREAS are also presented in table 3. The left symmetric part
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Figure 12. Mesh (a) and geometry attributes (b) of pyramid structure with 224 bar.
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Figure 13. True pareto fronts and random point sets for design example of pyramid structure with 224
bars.

Table 7. Statistical test results computed by use of quality measuring metric values (arc structure with
224 bar).

Multi-objective ~ Case Mean Std P Mean Std P
model no. (spread) (spread) (Welch test) (Igd) (Igd) (Welch test)
PbMIM 1 0.821 0.080 0.089 0.057

2 0.843 0.083 0.127 0.108

3 0.827 0.037 0.338 0.115 0.075 0.145

4 0.880 0.070 0.155 0.071
PbMOM 1 0.893 0.058 0.198 0.055

Mean: average of spread and Igd. Std: standard deviation of spread and Igd
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of this arch structure is presented to display both size and shape-related design variables of
arch structure (figure 8). The (half) arch includes 10 segments, each of which contains eleven R
(denoted by RI-RI11), ten B values (denoted by g1-810), eleven a values (denoted by al-all),
and two independent angle values ANGLEI and ANGLE?2 (see Appendix A for the details on
computation of nodal coordinates).

In order to evaluate the computational performance of PbMIM and PbMOM, their true
pareto front and current pareto fronts obtained are presented in figure 9. Also, a statistical
output obtained by computing the values of quality-measuring metrics is tabulated in table 4.
Considering table 4, there is no considerable difference among spread and Igd values of PO MIM
and PbMOM due to satisfying condition as (p > 0.050). Furthermore, the Spread and Igd val-
ues of PbMIM are lower than PbMOM. Therefore, the quality degree of optimal designations
corresponding to PbMIM is higher than PbMOM.

Particularly, the success order of four cases obtained by use of PbMIM is Case I, III, II and
IV. In this regard, some designations obtained by PbMIM are picked from the related cases to
carry out a further observation about them. Case 1 achieves to obtain a better optimal desig-
nation with a displacement of 0.2180 in. at node 1 along the x-direction and a critical load of
2044363.4099 Ib (table 5) thereby satisfying the serviceability requirement prescribed by AISC
(34.901%2/300 = 0.2327). It is apparent that the poorest fitness values set (32.8973 1b, 5.6317
in. and 696366. 7552 1b) corresponds to Case IV (see table 5). Thus, final shape of arch structure
corresponding to Case IV is obtained to be similar to its initial shape (figure 10d). Consider-
ing figure 11 and table 5, it can be said that the convergence degree of optimal designations
corresponding to Case IV is lower than Case I.

Examining the arch member cross-sectional areas, it is recognized that there is a direct relation
between the cross-sectional areas of diagonal members and the quality degree of optimal solu-
tion. In Case I, cross-sectional area values of diagonal members (160.9626, 18.5337, and 18.993
for members collected in the group called ‘AREA1-AREA3’) are higher than cross-sectional area
values of the remaining members (15.6072 and 2.5747 for members collected in the group called
‘AREA4-AREASY’). Furthermore, member cross-sectional areas have a tendency to increase as
they approach the arch support points. Same results are observed for Case II (table 3).

Table 8. Genetic output obtained by execution of PbMIM for pyramid structure with 224 bar (see table 6).

Case I Case II Case III Case IV

Min. weight (1b) (Fitness fun. 1)  42284.5605 282165.9660 34624.2193 442358.8447
Min. disp. (in) (Fitness fun. 2)* 0.3075 18.1748 20.7085 3.475
Makx. crit. load (Ib) (Fitness fun. 3) 2160787.2328 27135361.7271 26506061.4521 15580738.5066
No. of increments 6 66 44 32
No. of iteration for last increment
Mean of fitness Fitness fun 1 39228.1598 827420.1266  208118.1808  1741278.4138

values Fitness fun 2 11.5427 56.9995 6.8014 25.9820

Fitness fun 3 13240749.9747 14083218.3003 23104780.0177 12276148.8053

Standard deviation  Fitness fun 1 4961.4366 335190.5445 68211.8514 1074230.8200
of fitness values Fitness fun 2 6.0596 22.5369 7.7858 29.0376

Fitness fun3  8407213.0250 10888350.1210 22879827.6520 9158817.0309

*Computed at Apex of Arc Structure
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7.2 Application example 2: Pyramid structure with 224 bar

The pyramid structure has 224 bars. It is originally a single-layer-latticed pyramid (figures 12a
and 12b) (Hasancebi & Erbatur 2002). This four-storey pyramid with equal levels is loaded both
by two horizontal loads in two x and y directions and a vertical load at its apex. In order to pre-
serve the pyramid form for architectural and aesthetic purposes, nodes located on symmetry axes
are restricted to move along these axes. For this purpose, the position of nodes 52, 56, 60 and 64
are fixed to 393.70 in. Equality of certain nodal coordinates is provided by the coordinate param-
eters, denoted by COOR1-COOR?7. The size and shape-related design variables are summarized
in table 6.

In order to evaluate the computational performance of PbMIM and PbMOM, their true pareto
front and current pareto fronts obtained are presented in figure 13. Also, a statistical output
obtained by computing the values of quality-measuring metrics is tabulated in table 7. Consid-
ering table 7, it can be said that there is no considerable difference among spread and Igd values
of PbMIM and PbMOM for satisfying the required condition as (p > 0.050). Furthermore, the
Spread and Igd values of PbMIM are lower than PbMOM. Therefore, the quality degree of
optimal designations corresponding to PbMIM is higher than PbMOM.
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Figure 17. True pareto fronts and random point sets for design example of dome structure with 444 bars.

Table 10. Statistical test results computed by use of quality measuring metric values (arc structure with

444 bar).
Multi-objective Case Mean Std Mean Std P
model no. (spread) (spread) (Welch test) (Igd) (Igd) (Welch test)
PbMIM 1 0.901 0.076 0.155 0.071

2 0.880 0.070 0.153 0.115 0.657
PbMOM 1 0.912 0.058 0.220 0.113

Mean: average of spread and Igd. Std: standard deviation of spread and Igd

Table 11. Genetic output obtained by execution of PbMIM for dome structure with 444 bar (see table 9).

Case I Case II
Min. weight (1b) (Fitness fun. 1) 422251.0074 476924.9852
Min. disp. (in) (Fitness fun. 2)* 1.5354 0.2522
Makx. crit. load (Ib) (Fitness fun. 3) 5723679.9033 1300238.2772
No. of increments 11 5
No. of iteration for last increment 8 10
Mean of fitness values (Ib) Fitness fun 1 487087.6646 475162.3599
Fitness fun 2 33.0835 11.3302
Fitness fun 3 42267629.9753 22941818.8341
Standard deviation of fitness values Fitness fun 1 72168.9213 43863.7239
Fitness fun 2 10.7712 7.2594
Fitness fun 3 26609538.1877 16635233.4047

*Computed at apex of arc structure
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Particularly, the success order of four cases obtained by use of PbMIM is Case I, III, II and
IV. In this regard, some designations obtained by PbMIM are picked from these cases to carry
out a further observation about them. Compared to the other cases, Case I succeed in obtaining
better optimal designation with a lower displacement value of 0.3075 in. satisfying the service-
ability requirement prescribed in AISC specification (393.7%2/300 = 2.6247). However, critical
load value corresponding to Case I, 2160787.2328 is poorest compared to a critical load value
set of Case II, III and IV (27135361.7271, 26506061.4521 and 15580738.5066) (table 8). It
is shown that the final shape of pyramid structure corresponding to Case I has a higher apex
height (figure 14). It is clear that computational performance of Case I is higher than the other
ones considering the decreased standard deviation value set of fitness values (4961.4366, 6.0596
and 8407213.0250) (table 8) and the higher convergence degree of weight and critical load
(figure 15).

The relation between pyramid member cross-sectional areas is also investigated. After a care-
ful examination of pyramid member cross-sectional areas corresponding to Case I (table 6), it
is noticed that the diagonal member cross-sectional areas set (24.2942, 21.8630 and 22.4440
for members ‘1-16’, ‘98—112’ and ‘193-224") are larger than the other member cross-sectional
areas set (17.6759, 7.1223, 19.1728 ...etc. for members ‘17-32°, ‘33-48’, ‘49-64’. .. etc.).
Pyramid member cross-sectional areas are increased towards pyramid support points (table 6).

7.3 Application example 3: Dome structure with 444 bar

A dome structure with 444 bar is considered to evaluate the computational performance of
PbMIM and PbMOM with respect to an increased number of truss member and severe loading

REAT

—
——
\_——
NV
J
S
——

=

W7 s |
A

7
i

e
—

(b)

Figure 18. Optimal shapes of dome structure with 444 bar obtained by use of design variables represented
by case I (a), case II (b).
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conditions (Lamberti & Pappalettere 2004). It has vertical loads at node 121 and the
other free nodes, respectively (see the mesh and geometry attributes of dome structure in
figure 16).

While size-related design variables are represented by dome member cross-sectional areas,
nodal coordinates are employed for shape-related design variables. Taking the symmetry of dome
into account, all nodes collected into groups (COOR1-COOR20) are listed for the quarter part
of entire dome structure (table 9). Diagonal and horizontal members at each storey are collected
into either separate groups or single group. In this regard, size and shape-related design vari-
ables are collected into two combination sets notated by Case I and II (see linked members in
table 9).

The true pareto front and current pareto fronts of PbMIM and PbMOM obtained are presented
in figure 17. Also, a statistical output obtained by computing the values of quality-measuring
metrics is tabulated in table 10. Considering table 10, it can be said that there is no considerable
difference among spread and Igd values of PbMIM and PbMOM considering the required con-
dition (p > 0.050). Furthermore, the spread and Igd values of PbMIM are lower than PbMOM.
Therefore, the quality degree of optimal designations corresponding to PbMIM is higher than
PbMOM. Particularly, the success order of two cases obtained by use of PbMIM is Case II and
L. In this regard, some designations obtained by PbMIM are picked from these cases to carry out
a further observation about them.

The genetic output is listed in table 11. Distinguished from the preceding two exam-
ples, Case II achieves to obtain the highest quality of optimal design (476924.9852, 0.2522
and 1300238.2772) satisfying serviceability requirement prescribed in AISC specification
(400%2/300=2.6667) for node 121 in z direction. The final shapes obtained for Cases I and
IT are presented in figure 18. The success of Case II is confirmed by lower standard devia-
tion values (see table 11) and smaller displacement-weight values but higher critical load value
(figure 19).

It is clear that there is a relation between diagonal arch member cross-sectional areas and
quality degree of optimal designations. In Case I, cross-sectional area values of diagonal arch
member (131.2317, 102.2929 for members ‘1-12’ and ‘13-24’) are generally higher than other
arch member cross-sectional area set (77.1898 and 34.7586 for members ‘25-36" and ‘37-48’)
(see table 9). Moreover, it is seen that the member cross-sectional areas located in the bottom
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Figure 19. Variation of displacement and critical load at apex with weight of dome structure with 444 bar.
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part of the dome are larger than the member cross-sectional areas located in upper part close to
the apex point (table 9).

8. Conclusion

In this work, the effect of global stability on design optimization of truss structure is investigated
using multiple objective functions. For this purpose, two multi-objective optimization models,
the pareto-ranking based multi-objective optimization model (PbMOM) and the pareto-ranking
based multi-objective island model (PbMIM) are utilized to optimize the design of the real-world
planar and spatial truss structures using different combinations of size and shape-related design
variables. In order to compute the nonlinear critical load, arc-length method is employed and
improved to estimate the nonlinear critical load with an increased degree of accuracy thereby
implementing an eigenvalue analysis into its iteration mechanism.
The following observations are drawn from this work:

(1) The computational performances of PbMIM and PbMOM are compared by use of two
quality-measuring metrics, Spread and Igd. Furthermore, a statistical test is performed to
asses the accuracy of these quality-measuring metrics. Although the population size utilized
by PbMOM is twice the size of PboMIM’s population, it is shown that PbMIM is more
efficient optimization tool for optimal design of geometrically-nonlinear truss structures
than PO MOM.

(i1) An increase in the number of members and joints linked causes to decrease the variety in
optimal designations. Thus, the quality degree of optimal designations becomes poorer.

(iii) Diagonal truss members of truss structure have a major role in maximization of criti-
cal load. In this regard, it is shown that cross-sectional areas of diagonal truss members
corresponding to optimal designations are larger than the other truss members.

(iv) Considering the optimal designations, it is displayed that member cross-sectional areas
located around truss support points are larger than the other part of truss structures.

(v) It is displayed that PbMIM has a capability of generating feasible designations for even
more large and complex design spaces.

(vi) This study brings a new look at the nonlinearity effect on a simultaneously size and shape
optimization of truss structures. Therefore, proposed optimal design procedure deserves
more attention. The computational procedures of PbMIM are managed by the probabilistic
transition rules. Therefore, size and shape-related design variables are randomly generated.
Hence, although it is demonstrated that PbMIM achieves to generate feasible designations,
the number of feasible designations is decreased when truss shape obtained is not practically
applicable.

The future study will be improved by completing the following lacunae for design optimization
of geometrically nonlinear truss structures.

e Shape-related-design variables will be adjusted according to a practically-applicable-truss
shape, for example a circle, ellipse, a line with a predefined angle, etc. instead of a random
adjustment. Hence, the feasible solutions are correspondingly increased.

e The branched points located on sub-path switched from critical load will be considered to
evaluate their effect on the optimality degree.

e The penalization process will be improved to increase the number of feasible designations
and the quality of optimal designations.
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Appendix A. Computation of nodal coordinates.

Matlab expressions used to compute nodal coordinates

Node of arc structure with 101 bar

number X Coordinate Y Coordinate

1 —(R1*sin(pi*(45-alphal)/180)) (R1*cos(pi*(45-alphal)/180))

2 —((R1+al)*sin(pi*(45-alphal)/180)) ((R1+al)*cos(pi*(45-alphal)/180))

3 —(R2*sin(pi*(45-alpha2)/180)) (R2*cos(pi*(45-alpha2)/180))

4 —((R2+a2)*sin(pi*(45-alpha2)/180)) ((R2+a2)*cos(pi*(45-alpha2)/180))

5 —(R3*sin(pi*(45-alpha3)/180)) (R3*cos(pi*(45-alpha3)/180))

6 —((R3+a3)*sin(pi*(45-alpha3)/180)) ((R34-a3)*cos(pi*(45-alpha3)/180))

7 —(R4*sin(pi*(45-alpha4)/180)) (R4*cos(pi*(45-alpha4d)/180))

8 —((R4+a4)*sin(pi*(45-alpha4d)/180)) ((R4+a4d)*cos(pi*(45-alphad)/180))

9 —(R5*sin(pi*(45-alphaS)/180)) (R5*cos(pi*(45-alpha5)/180))

10 —((R5+a5)*sin(pi*(45-alpha5)/180)) ((R5+a5)*cos(pi*(45-alpha5)/180))

11 —(R6*sin(pi*(45-alpha6)/180)) (R6*cos(pi*(45-alpha6)/180))

12 —((R6+a6)*sin(pi*(45-alpha6)/180)) ((R6+4-a6)*cos(pi*(45-alpha6)/180))

13 —(R7*sin(pi*(45-alpha7)/180)) (R7*cos(pi*(45-alpha7)/180))

14 —((R7+a7)*sin(pi*(45-alpha7)/180)) ((R7+a7)*cos(pi*(45-alpha7)/180))

15 —(R8*sin(pi*(45-alpha8)/180)) (R8*cos(pi*(45-alpha8)/180))

16 —((R8+a8)*sin(pi*(45-alpha8)/180)) ((R8+a8)*cos(pi*(45-alpha8)/180))

17 —(R9*sin(pi*(45-alpha9)/180)) (R9*cos(pi*(45-alpha9)/180))

18 —((R9-+a9)*sin(pi*(45-alpha9)/180)) ((R94-a9)*cos(pi*(45-alpha9)/180))

19 —(R10*sin(pi*(45-alphal0)/180)) (R10*cos(pi*(45-alphal0)/180))

20 —((R10+al0)*sin(pi*(45-alphal0)/180)) ((R104-al0)*cos(pi*(45-alphal0)/180))

21 0 R11

22 0 (R11+all)

Nomenclature

Dext External joint load

P Load increment used for incremental stage

Pint Internal force

R Residual force

81 Displacement increment computed in the end of iteration process (beginning point
of incremental stage or first end of arc-length)

82 Displacement increment computed by external load (in incremental stage)

83 Sub-displacement computed in incremental stage but updated in iterative stage

54 Sub-displacement computed using residual force r (in iterative stage)

85 Sub-displacement increment for iterative stage

B Scaling factor

Bl Sub-scaling factor used to update § computed in iterative stage

£ Desired convergence degree

inc_max Maximum number of increments

it_max Maximum number of iterations

K System stiffness matrix



Stability-based design optimization of truss structures 67

det[K] Determinant of stiffness matrix

L Limit Load

w Weight of truss structure

1) Deflection

X,¥,2 Coordinates of nodes

P Material density

Nda Number of different cross-sectional areas
Nn Number of nodes

Ntm Number of truss member
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