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This paper investigates the entropy generation of a nonisothermal, incompressible Newtonian fluid flowing under the effect of a
constant pressure gradient in plane Poiseuille flow.The effects of variable viscosity and thermal conductivity are also included.The
viscosity and thermal conductivity of the fluid exhibit linear temperature dependence and the effect of viscous heating is included
in the analysis. Channel walls are kept at constant temperatures. Velocity, temperature, and entropy generation profiles due to heat
transfer and fluid friction are plotted. The effects of Brinkman number, Peclet number, pressure gradient, viscosity, and thermal
conductivity constant on velocity, temperature, and entropy generation number are discussed. Discretization is performed using a
pseudospectral technique based on Chebyshev polynomial expansions. The resulting nonlinear, coupled boundary value problem
is solved iteratively using Chebyshev-pseudospectral method.

1. Introduction

Entropy generation due to different sources of thermody-
namic irreversibilities destroys available energy and causes
decreasing efficiency of processes. These thermodynamic
irreversibilities can cause decreasing net power output and
increasing net power input. If the causes of entropy gener-
ation can be identified, it can be minimized so that available
energy can be saved. The available work can be lost in many
components such as heat exchangers, mixers, turbines, and
compressors due to irreversibility [1]. Intrinsic irreversibili-
ties can be identified by a useful tool such as entropy genera-
tion analyses or second law analyses in any given system [2].
Mahmud andFraser [3] investigated thermodynamic analysis
of non-Newtonian flow and heat transfer inside a channel
with two parallel plates. They considered fully developed
forced convection. They solved governing equations ana-
lytically and investigated the effects of different parameters
on entropy generation, velocity, and temperature distribu-
tions. The distribution of entropy generation in 2D laminar
Poiseuille-Benard channel flow was studied by Abbassi et
al. [4]. They showed variations of entropy generation and
the Bejan number and found that the maximum entropy
generation is localized at areaswhere heat exchanged between

the walls and the flow is maximum. Demirel and Kahraman
[5] investigated the entropy generation due to heat transfer
and friction has been calculated for fully developed, forced
convection flow in a large rectangular duct, packed with
spherical particles, with constant heat fluxes applied to both
the top (heated) and bottom (cooled) walls.They determined
the distributions of the volumetric entropy generation and
displayed graphically fully developed velocity and tempera-
ture profiles. Entropy generation for a fully developed laminar
viscous flow in a duct subjected to constant wall temperature
is investigated analytically by Şahin [6]. He considered the
temperature dependence on the viscosity in the analysis.
The variation of total exergy loss due to both the entropy
generation and the pumping process is studied along the duct
length. Şahin [7] determined the optimum duct geometry
which minimizes losses for a range of laminar flows and
constant heat flux by using a second-law comparison of
irreversibilities. Circular, square, and equilaterally triangular
and rectangular duct geometries are examined in this study.
It was pointed out that circular geometry is the best especially
when the frictional contributions of entropy generation
become important. Yürüsoy et al. [8] formulated the entropy
generation due to fluid friction and heat transfer with
considering non-Newtonian fluid flow in annular pipes.They
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presented velocity, temperature, and entropy fields and found
that entropy generation number increaseswith reducing non-
Newtonian parameter. Vogel model was employed to account
for the temperature-dependent viscosity in another study of
Pakdemirli and Yilbas [9].

Because of its fundamental importance in many process
components, extensive studies have been conducted to ana-
lyze entropy generation for flowing fluids in a channel and
pipe, but most studies have been confined to constant viscos-
ity case.Makinde andAziz [10] reported steady state solutions
for flows of a variable viscosity fluid through a planePoiseuille
flow with asymmetric convective cooling. They focused on
the effect of heat generation due to viscous dissipation
by using an efficient numerical shooting technique with a
fourth-order Runge-Kutta algorithm. Şahin [11] studied a
numerical investigation to determine the entropy generation
and pumping power requirements for a laminar crude oil
flow in a pipe with consideration of effect of viscosity on
temperature. Makinde [12] was concerned with the analysis
of inherent irreversibility in hydromagnetic boundary layer
flow of variable viscosity fluid over a semi-infinite flat plate
under the influence of thermal radiation and Newtonian
heating. The effects of magnetic field parameter, Brinkman
number, the Prandtl number, variable viscosity parameter,
radiation parameter, and local Biot number on the fluid
velocity profiles, temperature profiles, local skin friction, and
local Nusselt number were presented in this study.

The present study combines the effect of variable viscosity
and thermal conductivity to determine the flow profiles
and temperature profiles in a plane Poiseuille flow and
subsequently use that information to establish the entropy
generation patterns. The governing equations are solved iter-
atively using Chebyshev-pseudospectral method. The effects
of Brinkman number, Peclet number, and pressure gradient
on the entropy generation are also determined.

2. Velocity and Temperature Profiles

The velocity distribution of flow can be obtained from the
continuity and momentum equations. In order to obtain
temperature distribution, energy equation is also used. Two-
dimensional, nonisothermal, and steady flow of an incom-
pressible Newtonian fluid in a channel is considered. The
flow is driven by a constant pressure gradient acting along
the channel axis. Upper and lower walls of the channel
are kept at the same constant heat flux. Fluid viscosity and
thermal conductivity depend only on the local temperature.
The continuity, momentum balance, and energy balance for
a fluid can be expressed in the dimensional form as
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In the present investigation two semiempirical formulas are
used for viscosity and thermal conductivity, which were
introduced by Charraudeau [13], as follows:
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It is more convenient for the subsequent analysis to write the
governing equations in dimensionless form by introducing
the following parameters:
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In the above equations 𝑥 shows the flow direction, 𝑦 is the
coordinate normal to flow direction, 𝑢 is the velocity parallel
to the plates, V denotes the velocity perpendicular to flow
direction, 𝑃 is the pressure, 𝜃 shows dimensionless temper-
ature, 𝜇

𝑜
and 𝑘

𝑜
are the viscosity and thermal conductivity

at reference temperature 𝑇
𝑜
, 𝑈
𝑜
is the mean flow velocity, 𝑙

shows the channel height, and 𝑇
𝑤
is wall temperature.

Using the dimensionless parameter, the nondimensional
form of the continuity, momentum balance, and energy
balance equations including the effect of viscous heating can
be expressed in the dimensionless form as
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where Reynolds number (Re), Prandtl number (Pr), and Bri-
nkman number (Br) are defined as Re = 𝜌 𝑈

0
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0
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𝐶
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.

Continuity andmomentum equations are solved simulta-
neously with the energy equation to determine velocity and
temperature distribution for constant heat flux. In the case
of constant heat flux, the continuous heating to the fluid
flow continuously changes the viscosity which, in the case of
variable viscosity, couples momentum equations with energy
equations.

In the previous equations, viscosity and thermal conduc-
tivity are linear functions of temperature

𝜇 = 1 + 𝜀𝜃, 𝑘 = 1 + 𝛾𝜃,
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(6)
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The dimensionless boundary conditions are

𝑢 = 0 when 𝑦 = 0, 𝑢 = 0 when 𝑦 = 1,

Θ = 0 when 𝑦 = 0, Θ = 0 when 𝑦 = 1.

(7)

Differential equations, along with the boundary conditions,
constitute the governing equations to determine the base-
flow velocity temperature profiles for the Poiseuille fluids.
The boundary-value problem is solved numerically using a
Chebyshev-pseudospectral method.

The nonlinear boundary value problem described pre-
viously was solved numerically by using Chebyshev-pseu-
dospectral method. In this method, the 0 ≤ 𝑦 ≤ 1 physical
domain is first transformed to −1 ≤ 𝑌 ≤ 1 spectral domain
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Here tr is transfer coefficient and its value is 2.0. As a second
step, the velocity 𝑢 and temperature 𝜃 are expanded in a series
of Chebyshev polynomials
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where 𝑐
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= 2 and 𝑐
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= 1 for 𝑛 ≥ 1.

The temperature and velocity governing equations
become
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and the equations are expanded into Chebyshev polynomials
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Figure 1: (a) Effect of pressure gradient on velocity profile. (b) Effect of pressure gradient on temperature profile.

is chosen. The Pseudospectral method requires that momen-
tum and energy equations can be satisfied exactly at the
previous collocation points.These results in 2𝑁−2 equations
with the addition of four boundary conditions (2𝑁 + 2)

equations are obtained. Since themomentum and energy bal-
ance equations are coupled, they are solved iteratively using a
nonlinear equation solver from IMSL subroutine software.

3. Entropy Generation

Entropy generation is calculated from velocity and temper-
ature profiles that are obtained from numerical solution of
momentum and energy equations. The equation of entropy
generation for two-dimensional flow of a Newtonian incom-
pressible fluid is as follows [14]:
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In this study due to assumptions (𝜕𝑢/𝜕𝑥 = 0, 𝜕V/𝜕𝑦 = 0,
𝜕V/𝜕𝑥 = 0), entropy generation equation is given below.
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Dimensionless entropy generation can be expressed as
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where the ratio Br/Ω is called group parameter. Since the
axial conduction term has negligible effect on total entropy
generation rate in the study byMahmud and Fraser [3],in this

study axial conduction term is not included. The dimension-
less entropy generation equation consists of two parts. The
first part is the dimensionless entropy generation due to heat
transfer𝑁

ℎ
and the second part is the entropy generation due

to fluid friction𝑁
𝑓
.

4. Results and Discussion

Entropy generation in the flow field due to fluid friction and
heat transfer is investigated. There are various parameters
here whose effects on the flow behavior must be investigated.
They are dimensionless parameters 𝛾 and 𝜀 that characterize
the dependence of the thermal conductivity and viscosity,
respectively, on temperature, Brinkman number (Br) that is
a measure of magnitude of viscous heating, dimensionless
pressure gradient 𝑑𝑝/𝑑𝑥 = 𝐺 that denotes the degree
of fluid driving force, dimensionless constant temperature
gradient in axial direction 𝑑Θ/𝑑𝑥, and Peclet number (Pe)
that signifies axial conduction of thermal energy [15]. During
this study temperature gradient in axial direction is kept as a
constant value.

Pressure gradient affects the velocity profiles as well as
temperature profiles. To see the effect of pressure gradient
on velocity and temperature profiles, Figures 1(a) and 1(b)
are illustrated. Constant parameters are Pe = 7.0, Br = 5.0,
𝜀 = 0.01, 𝛾 = 0.01, and Br/Ω = 1.0 while 𝐺 = −0.5, −1.0,
and −2.0. It is clearly seen that the pressure gradient has the
considerable effect on velocity and temperature profiles in
Figures 1(a) and 1(b). Figures 2(a) and 2(b) depict the entropy
generation due to heat transfer and fluid friction for different
pressure gradient values for the same constant parameters.
Entropy generation arising from fluid friction effect increases
if the pressure gradient increases. At a location on the wall
entropy generation due to fluid friction is expected to be
higher than any location in the channel because of viscous
friction between the walls and fluid.
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Figure 2: (a) Effect of pressure gradient on entropy generation due to fluid friction. (b) Effect of pressure gradient on entropy generation due
to heat transfer.
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Figure 3: (a) Effect of Peclet number on entropy generation due to fluid friction. (b) Effect of Peclet number on entropy generation due to
heat transfer.

The entropy generation due to heat transfer is plotted
in Figure 2(b). For pressure gradient values −0.5 and −1.0,
entropy generation increases from the center of channel to
a maximum value and then decreases towards the channel
walls. Since sudden change of temperature occurs, maximum
entropy generation due to heat transfer is not generated on
the wall; instead it is generated at a location near the wall. For
𝑑𝑝/𝑑𝑥 = −2.0, entropy generation is zero at a centerline of
channel and at a location close to the walls. Between these
regions maximum entropy generation is generated.

The effect of Pe number on entropy generation due to heat
transfer and fluid friction is shown in Figures 3(a) and 3(b),
respectively. Constant parameters are Br = 5.0, 𝜀 = 0.01,

𝛾 = 0.01, 𝐺 = −0.5, and Br/Ω = 1.0 while Pe = 7.0, 15.0,
and 50.0. Figure 3(a) shows that increasing Pe number has
no effect on entropy generation due to fluid friction. Entropy
generation due to heat transfer is presented in Figure 3(b)
for different values of Pe number. This figure shows that
entropy generation decreases sharply towards the centerline
of channel for Pe = 50.0 and gradually decreases for Pe = 7.0

and 15.0.
The effect of Br number on velocity and temperature

profiles is shown in Figures 4(a) and 4(b), respectively.
Constant parameters are Pe = 7.0, 𝜀 = 0.01, 𝛾 = 0.01, 𝐺 =

−0.5, and Br/Ω = 1.0 while Br = 3.0, 5.0, and 10.0.
Figure 4(a) shows that increasing Br number has no effect
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Figure 4: (a) Effect of Br number on velocity profile. (b) Effect of Br number on temperature profile.
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Figure 5: (a) Effect of Br number on entropy generation due to fluid friction. (b) Effect of Br number on entropy generation due to heat
transfer.

on velocity profile. Since the group parameter determines the
relative importance of viscous effects, viscous irreversibility
is illustrated in Figure 5(a) for different values of group
parameter for Br = 5.0. In all cases, no entropy is generated
at the center of channel. Magnitude of entropy generation
takes higher value for higher group parameter. However,
Figure 4(b) shows that the increase in Br number causes
increase in the fluid temperature. This, in turns causes a
decrease in the entropy generation due to heat transfer.
The effect of Br number on entropy generation due to heat
transfer is given in Figure 5(b).This figure shows that entropy

generation is zero at channel center line since velocity and
temperature gradient are zero at center line of channel. It is
also shown from the figure that for all Br number values,
entropy generation firstly increases from near to far of the
wall and then gradually decreases towards the center of
channel.Thedistance, whichmaximum irreversibility occurs,
increases with the increase of Br number.

Figures 6(a) and 6(b) depict the effect of dimensionless
viscosity constant (𝜀) on dimensionless velocity and temper-
ature profiles. Constant parameters are Br = 5.0, Pe = 50, 𝛾 =

0.01, 𝑑𝑝/𝑑𝑥 = −0.5, and Br/Ω = 1.0 while 𝜀 = 0.0, 0.005,
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Figure 6: (a) Effect of 𝜀 on velocity profile. (b) Effect of 𝜀 on temperature profile.
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Figure 7: (a) Effect of 𝜀 on entropy generation due to fluid friction. (b) Effect of 𝜀 on entropy generation due to heat transfer.

and 0.01. With increasing 𝜀 values, velocity profile increases
slightly.

Absolute value of temperature decreases slightly as well
with increasing 𝜀. Figures 7(a) and 7(b) are plotted to show
the effect of dimensionless viscosity constant (𝜀) on entropy
generation due to fluid friction and due to heat transfer.
Figures 7(a) and 7(b) present the effect of dimensionless
viscosity constant (𝜀) on entropy generation. With increasing
𝜀 values, both entropy generation due to friction and entropy

generation due to heat transfer slightly increase. Increase
in entropy generation due to heat transfer is greater at the
channel walls than far from the channel center.

Figures 8 and 9 illustrate the effect of thermal conduc-
tivity (𝛾) on dimensionless velocity and temperature pro-
files. Constant parameters are Br = 5.0, Pe = 50, 𝜀 =

0.01, 𝑑𝑝/𝑑𝑥 = −0.5, and Br/Ω = 1.0 while 𝛾 = 0.001, 0.005,
and 0.01. An increase in 𝛾 values results in a slight increase in
absolute value of temperature profile and this directly causes
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Figure 8: (a) Effect of 𝛾 on velocity profile. (b) Effect of 𝛾 on temperature profile.
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Figure 9: (a) Effect of 𝛾 on entropy generation due to fluid friction. (b) Effect of 𝛾 on entropy generation due to heat transfer.

a slight change in entropy generation. Figures 8(a) and 9(a)
show that changing 𝛾 values has no effect on velocity profile
and entropy generation due to fluid friction.

5. Conclusion

In this paper, numerical study is performed to investigate
the entropy generation in Plane poiseuille flow with constant
heat flux at the wall for Newtonian, incompressible fluid.
The effects of dimensionless viscosity constant (𝜀), thermal
conductivity (𝛾), Pe number, Br number, and pressure gra-
dient on flow and entropy generation are discussed. It is

found that although Peclet number and Brinkman number
have some degree of effect on entropy generation due to
heat transfer, the entropy generation due to fluid friction is
not effected much with these parameters. With increasing
dimensionless viscosity constant and thermal conductivity,
entropy generation due to heat transfer slightly increases.
Entropy generation due to fluid friction is not affected much
with the increase in viscosity constant and is not affected with
the increase in thermal conductivity. On the other hand, an
increase in pressure gradient (𝑑𝑝/𝑑𝑥 = 𝐺) has a considerable
effect on both Nh (entropy generation due to heat transfer)
and Nf (entropy generation due to fluid friction). It is also
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found that magnitude of entropy generation due to fluid
friction takes higher value for higher group parameter except
for the center of channel.
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[2] G. Ibánez, S. Cuevas, and M. L. de Haro, “Minimization of
entropy generation by asymmetric convective cooling,” Interna-
tional Journal of Heat andMass Transfer, vol. 46, no. 8, pp. 1321–
1328, 2003.

[3] S.Mahmud andR. A. Fraser, “Inherent irreversibility of channel
and pipe flows for non-Newtonian fluids,” International Com-
munications in Heat and Mass Transfer, vol. 29, no. 5, pp. 577–
587, 2002.

[4] H. Abbassi, M. Magherbi, and A. B. Brahim, “Entropy genera-
tion in Poiseuille-Benard channel flow,” International Journal of
Thermal Sciences, vol. 42, no. 12, pp. 1081–1088, 2003.

[5] Y. Demirel and R. Kahraman, “Entropy generation in a rectan-
gular packed duct with wall heat flux,” International Journal of
Heat and Mass Transfer, vol. 42, no. 13, pp. 2337–2344, 1999.

[6] A. Z. Sahin, “Second law analysis of laminar viscous flow
through a duct subjected to constant wall temperature,” Journal
of Heat Transfer, vol. 120, pp. 76–83, 1998.
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