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The problem of thermal convection between rotating rigid plates under the influence of gravity is treated numerically.The approach
uses solenoidal basis functions and their duals which are divergence free. The representation in terms of the solenoidal bases
provides ease in the implementation by a reduction in the number of dependent variables and equations. A Galerkin procedure
onto the dual solenoidal bases is utilized in order to reduce the governing system of partial differential equations to a system of
ordinary differential equations for subsequent parametric study. The Galerkin procedure results in the elimination of the pressure
and is facilitated by the use of Fourier-Legendre spectral representation. Numerical experiments on the linear stability of rotating
thermal convection and nonlinear simulations are performed and satisfactorily compared with the literature.

1. Introduction

Thermal convection in a fluid layer has been a cradle of
nonlinear hydrodynamic stability studies. In particular, the
classical Rayleigh-Bénard problem of thermal convection in
a horizontal layer which is heated from below is the most
studied problem of the convective flows. This is due to its
stability behavior exhibiting a sequence of discrete steps from
steady regime to periodic, quasiperiodic regimes and eventu-
ally to chaotic regime as well as the simplicity of its geom-
etry. This geometry of infinite fluid layer confined between
rigid plates has been approximated by a periodic horizontal
extent in the numerical studies and by large-aspect-ratio
containers in the experiments. The underlying nonlinear
stabilitymechanismof transition has been extensively studied
both experimentally [1] and numerically [2–4]. Rayleigh and
Prandtl numbers as well as the wavelength of the imposed
disturbances play important roles as control parameters in the
sequence of transitions. Other control mechanisms studied
may include externally imposed magnetic field and rotation
[5].

In this work, the effect of rotation on thermal convection
is studied using a direct numerical simulation. Early studies
on this topic go back to the theoretical investigations on the
linear stability with/without rotation by Chandrasekhar [5].
Another detailed linear stability analysis of rotating Rayleigh-
Bénard flow was performed by Clever and Busse [6] for criti-
cal wavenumber and corresponding critical Rayleigh number
values for a range of Coriolis parameter (Ω) values in a geo-
metry of rigid plates rotating around its vertical axis. Some
quantitative stability criterion is obtained depending on the
varied rotation, and a stability diagram of the natural convec-
tion with respect to rotation is constructed. It is observed that
coriolis force reduces the heat transport for low Rayleigh and
high Prandtl number flows, while limited rotation enhances
the heat transport for decreasing Prandtl number.

Early nonlinear studies include Veronis’ work [7] who
worked on the two-dimensional system with stress-free
boundary conditions. It was observed that finite amplitude
instability occurs due to the nonlinear effects and that it can
be damped by increasing rotation. Further, Veronis [8] theo-
retically examined the effects of rotation and viscosity on
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the cellular motion of convection for different boundary
conditions. A clear explanation was provided on the energy
releasing and dissipative mechanisms with regards to viscos-
ity. The effects of rotation on convection in low and high
Prandtl fluids confined between stress-free boundaries were
also studied by Veronis [9]. A unique feature is observed to
occur that steady finite amplitude convection can exist for
Rayleigh number which is lower than the critical Rayleigh
number for a limited range of rotation.

Theoretical studies include those of Küppers and Lortz
[10] that investigated the stability behavior for the case of
infinite Prandtl number and free-free boundaries. It was
shown that there is no stable steady-state convection for Tay-
lor number which is higher than the critical Taylor number,
Ta = 2285 (Ω ≈ 23.9). Küppers [11] extended the work to
rigid boundaries and finite Prandtl numbers. Recently Clever
and Busse [12] studied numerically two- and three-dimen-
sional convections under the influence of rotation. Unusual
dynamical features for low Prandtl number flow were the
main attention in this work. Kurt et al. [13, 14] studied rotat-
ing cylindrical annulus with small gap approximation. They
conducted stability analysis of convection influenced by
rotation and magnetic field. They also observed some
instabilities.

Experimentally, Rossby [15] investigated the natural con-
vection in several fluids confined between rotating and
stationary plates.Thepredictions of the stability theory on the
onset of convection were successfully tested. In this experi-
ment, the finite amplitude instability in mercury for a limited
range of rotation was studied. Somerville and Lipps [16]
repeated Rossby’s work in a three-dimensional numerical
simulation. Quasi-steady and quasi-two-dimensional flows
with the same experimental parameters of Rossby’s were
observed. Knobloch and Clune [17] focused on the previous
experimental work and obtained the results of linear stability
and weakly nonlinear calculations under the same experi-
mental conditions.

In this work, a solenoidal spectral representation for the
flow field is used in a Galerkin approach. As a consequence,
the incompressibility (divergence free) and boundary condi-
tions on the flow field are strictly enforced. For the sensitive
nature of the parametric study undertaken, this facilitates the
accurate determination of the transitory dynamic picture of
the flow. The incompressibility condition appears as a con-
straint in the governing system of equations and is an impor-
tant source of difficulty in numerical simulations. There are
schemes developed solely to satisfy the continuity constraints
such as the fractional step scheme by Orzag and Kells [18]
and the scheme by Kleiser and Schumann [19]. However,
this can only be achieved to a limited degree of accuracy.
Another issue is the numerical handling of the pressure
variable that usually comeswithout any boundary conditions.
In the current approach, the pressure term is eliminated in
the Galerkin projection procedure onto a solenoidal dual
space.

There have been various works utilizing solenoidal spec-
tral expansions.Moser et al. [20] presented a spectral method
to automatically satisfy the continuity equation and boundary
conditions and tested their method on the channel flow and

the flow between concentric cylinders. They expanded the
vertical and horizontal extents with Chebyshev polynomials
and Fourier series, respectively. Kessler [21] studied steady
and oscillatory regimes of Rayleigh-Bénard convection with
explicitly constructed solenoidal bases based on poloidal-
toroidal decomposition. Trigonometric polynomials and
the beam functions were used in the construction of the
solenoidal bases satisfying the boundary conditions in a
rectangular container. Gelfgat [22] carried out a parametric
study for Rayleigh-Bénard convection in rectangular 2D
and 3D boxes with divergence-free Galerkin method based
on Chebyshev polynomials of the first and second types.
Clever and Busse [12] used toroidal-poloidal expansion in
their numerical approach satisfying the solenoidal condition
exactly; however, the procedure for eliminating the pressure
leads to higher order differentials. Puigjaner et al. [23] studied
numerically stability and bifurcation in convective flow in
air in a cubical cavity heated from below. They used a
divergence-free Galerkin spectral method to discretize the
system and a parameter continuation method to determine
the different branches of solution. They used combination
of trigonometric and hyperbolic functions instead of Jacobi
polynomial family. Most recently Meseguer and Trefethen
[24] proposed a spectral Petrov-Galerkin formulation based
on divergence-free bases in terms of Chebyshev polynomials
to study stability of pipe flow.

In this work, the application of solenoidal spectral
Galerkin approach to thermal convection under rotation
utilizes Legendre polynomials as the underlying spectral rep-
resentation. The use of Legendre polynomials avails Gauss-
Legendre-Lobatto quadrature integration for the accurate
evaluation of the inner product integrals resulting from
Galerkin projection onto the dual space. The dual space
is spanned by dual bases that are also required to satisfy
the solenoidal condition in a form that incorporates the
associated weight arising from the inner product in the
spectral representation.This is required in order to eliminate
the pressure term in the projection procedure. However,
the use of Legendre polynomials significantly simplifies the
construction of the solenoidal dual bases due to associated
unity weight.

2. Governing Equations

Boussinesq equations are used as a model of buoyancy
driven thermal convection with a coriolis term arising due
to rotation in a physical domain between rotating rigid plates
as illustrated in Figure 1. Under the scaling of the respective
physical variables based on the thermal diffusion time ℎ2/𝛼,
the fluid layer half depth ℎ = 𝐻/2, temperature difference
between the rigid plates Δ𝑇, and the dimensionless form of
the equations take the form:

∇ ⋅ u = 0, (1)
𝜕u
𝜕𝑡

+ (u ⋅ ∇) u

= −∇𝑝 + PrRa𝜃e
𝑧
+ Pr∇2u − 2PrΩe

𝑧
× u,

(2)
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𝜕𝜃

𝜕𝑡
+ (u ⋅ ∇) 𝜃 =

u ⋅ e
𝑧

2
+ ∇

2
𝜃, (3)

where

Ω =
Ω

𝑧
ℎ2

𝜈
, Ra =

𝑔𝛽Δ𝑇ℎ3

𝜈𝛼
, Pr = 𝜈

𝛼
(4)

are the Coriolis parameter (Ω) and Rayleigh (Ra) and Prandtl
(Pr) numbers, respectively. The use of fluid layer half depth
as the spatial scale, so that −1 ≤ 𝑧 ≤ 1 for convenience,
results in Ra andΩ based on the half depth.The square of the
Coriolis parameter is known as Taylor number (Ta = 4Ω

2).
The quantities involved are Ω

𝑧
as the rotation rate about the

vertical axis, 𝛼 as the thermal diffusivity, 𝛽 as the thermal
expansion coefficient, 𝑔 as acceleration of gravity, and 𝜈 as
the kinematic viscosity.The convectivemotions are described
by the velocity u = (𝑢, V, 𝑤) and the temperature 𝜃, which
represents the deviation from the conductive profile.

The no-slip boundary conditions at the upper and lower
rigid walls are considered:

u = 0, 𝜃 = 0, (5)

at the rigid plates (𝑧 = ±1) in the 𝑧-direction where e
𝑧
is the

direction vector opposite to gravity. The flow in the infinite
horizontal extent is assumed to be periodic in the 𝑥- and 𝑦-
directions. Our investigation is limited to those cases with
small rotation rate so that centrifugal force is negligible in
comparison with gravity [6].

3. Numerical Procedure and the Bases

3.1. Considerations. The assumption of periodicity allows the
use of Fourier representation in the 𝑥- and 𝑦-directions for
the velocity and temperature fields in the form:

u (x, 𝑡) = ∑
|𝑚|≤𝑁

𝑥
/2

∑
|𝑛|≤𝑁

𝑦
/2

𝑒
𝑖𝑘
𝑥
𝑥+𝑖𝑘
𝑦
𝑦

×

𝑄

∑
𝑝=0

(𝑎
(1)

𝑝
V(1)

𝑝
(𝑧) + 𝑎

(2)

𝑝
V(2)

𝑝
(𝑧)) ,

(6)

𝜃 (x, 𝑡) = ∑
|𝑚|≤𝑁

𝑥
/2

∑
|𝑛|≤𝑁

𝑦
/2

𝑒
𝑖𝑘
𝑥
𝑥+𝑖𝑘
𝑦
𝑦

𝑄

∑
𝑝=0

𝑏
𝑝
𝑇

𝑝
(𝑧) , (7)

for the wave numbers

𝑘
𝑥
=
2𝜋𝑛

𝑠
𝑥

, −
𝑁

𝑥

2
≤ 𝑛 ≤

𝑁
𝑥

2
,

𝑘
𝑦
=
2𝜋𝑚

𝑠
𝑦

, −
𝑁

𝑦

2
≤ 𝑛 ≤

𝑁
𝑦

2
,

(8)

where 𝑠
𝑥
= 𝐿

𝑥
/ℎ, 𝑠

𝑦
= 𝐿

𝑦
/ℎ are the scaled periods in 𝑥-

and 𝑦-directions, respectively, 𝑎(𝑗)

𝑝 (𝑡), 𝑏
𝑝
(𝑡) are the expansion

coefficients, and {V(𝑗)

𝑝 (𝑧), 𝑇
𝑝
(𝑧)} are the set of basis functions.

The set of basis functions are chosen to satisfy

∇ ⋅ (𝑒
𝑖𝑘
𝑥
𝑥+𝑖𝑘
𝑦
𝑦V(𝑗)

𝑝
(𝑧)) = 0, V(𝑗)

𝑝
(𝑧 = ∓1) = 0, (9)

for 𝑗 = 1, 2 and 𝑇
𝑝
(𝑧 = ∓1) = 0. The velocity basis functions

V(𝑗)

𝑝 (𝑧) come in pairs due to the fact that the continuity
equation (1) reduces the degree of freedom in determining
the velocity field to two by connecting the three components.

Substitution of the representations (6) and (7) into
the governing (2) and (3) results in a system of ordinary
differential equations for the coefficients 𝑎(𝑗)

𝑝 (𝑡), 𝑏
𝑝
(𝑡) after

a projection procedure which is carried out by the inner
product

(f , g) = ∫
1

−1

𝜔 (𝑧) f∗
⋅ g 𝑑𝑧, (10)

using the orthogonality of Fourier expansion for each wave-
number pair (𝑘

𝑥
, 𝑘

𝑦
), where g belongs to the physical space

and f to the dual space, ∗ denotes the conjugate transpose,
and 𝜔(𝑧) is a suitable weight function. The projection
step requires construction of a set of dual basis functions
{V(𝑗)

𝑝
(𝑧), 𝑇

𝑝
(𝑧)}. In the construction of the dual velocity basis

functions V(𝑗)

𝑝
(𝑧), the key consideration is the elimination

of the pressure term from the resulting equations. This is
accomplished by the conditions:

∇ ⋅ (𝜔 (𝑧) 𝑒
𝑖𝑘
𝑥
𝑥+𝑖𝑘
𝑦
𝑦 V(𝑗)

𝑝
(𝑧)) = 0, V(𝑗)

𝑝
(𝑧 = ∓1) ⋅ n = 0,

(11)

where n is the unit outward normal at the plates. The dual
basis functions 𝑇

𝑝
(𝑧) is required to satisfy 𝑇

𝑝
(𝑧 = ±1) = 0.

Finally, an underlying spectral representation for the basis
functions based on a class of Jacobi polynomials, namely,
Legendre polynomials, is utilized. There are two consider-
ations in this choice. First, the inherent weight function
𝜔(𝑧) = 1 associated with Legendre polynomials makes the
construction of the solenoidal dual bases easier. Second, the
availability of the Gauss-Legendre-Lobatto (GLL) quadrature
facilitates accurate evaluation of the projection integrals

(f , g) = ∫
1

−1

f∗
⋅ g 𝑑𝑧 ≈

𝑁
𝑧

∑
𝑗=0

𝜔
𝑗
f∗

(𝑧
𝑗
) ⋅ g∗

(𝑧
𝑗
) , (12)

for the integrands of order 2𝑁
𝑧
− 1. Further, the denser dis-

tribution of the GLL nodes near the boundaries of the plates
provides the desired resolution for the boundary layers.

3.2. Construction. The solenoidal condition (1) in Fourier
representation becomes

𝑖𝑘
𝑥
𝑢̂ (𝑚, 𝑛, 𝑧, 𝑡) + 𝑖𝑘

𝑦
V̂ (𝑚, 𝑛, 𝑧, 𝑡) + D𝑤̂ (𝑚, 𝑛, 𝑧, 𝑡) = 0.

(13)

Here, D2 = 𝑑2/𝑑𝑧2 stands for a part of the Laplacian ∇2.
This provides the main constraint for the construction of
the solenoidal and dual bases. The degree of freedom in
the representation of a solenoidal flow field is reduced to
two as the three components of the velocity field are con-
nected through (13). Solenoidal nature of the flow field also
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involves the usual toroidal-poloidal decomposition of the
motion. Therefore, first bases, V(1)

𝑝
, are lacking in their

vertical velocity components while the second bases,V(2)

𝑝
, are

lacking in their vertical vorticity components. According to
this classification, the expansion coefficient 𝑎(1)

𝑝
is associated

with the toroidal component and 𝑎(2)

𝑝
is associated with the

poloidal component of the velocity field.The subspace 𝑆 of the
solenoidal flow field and the dual subspace 𝐷 as constrained
by (9), (11), and (13) are constructed as follows.

Case 1. 𝑘
𝑥

̸= 0 and/or 𝑘
𝑦

̸= 0:

𝑆 = span
{{{

{{{

{

[
[
[

[

−(
𝑘

𝑦

𝑘
𝑥

)𝑔 (𝑧)

𝑔 (𝑧)

0

]
]
]

]

,[

[

𝑖𝑘
𝑥
Dℎ (𝑧)

𝑖𝑘
𝑦
Dℎ (𝑧)

(𝑘
2

𝑥
+ 𝑘2

𝑦
) ℎ (𝑧)

]

]

}}}

}}}

}

,

𝐷 = span
{{{

{{{

{

[
[
[

[

−(
𝑘

𝑦

𝑘
𝑥

)𝑓 (𝑧)

𝑓 (𝑧)

0

]
]
]

]

,[

[

𝑖𝑘
𝑥
D𝑔 (𝑧)

𝑖𝑘
𝑦
D𝑔 (𝑧)

(𝑘
2

𝑥
+ 𝑘2

𝑦
) 𝑔 (𝑧)

]

]

}}}

}}}

}

.

(14)

Case 2. 𝑘
𝑥
= 0 and 𝑘

𝑦
= 0:

𝑆 = span
{

{

{

[

[

−𝑔 (𝑧)

0

0

]

]

,[

[

0

𝑔 (𝑧)

0

]

]

}

}

}

,

𝐷 = span
{

{

{

[

[

−𝑓 (𝑧)

0

0

]

]

,[

[

0

𝑓 (𝑧)

0

]

]

}

}

}

,

𝑇
𝑝
(𝑧) = 𝑇

𝑝
(𝑧) = 𝑔 (𝑧) ,

(15)

where 𝑓(𝑧) = 𝐿
𝑝
(𝑧), 𝑔(𝑧) = (1 − 𝑧2)𝐿

𝑝
(𝑧), and ℎ(𝑧) =

(1−𝑧2)
2
𝐿

𝑝
(𝑧) are selected to satisfy the boundary conditions,

and 𝐿
𝑝
(𝑧) is the Legendre polynomial of order 𝑝. Besides

satisfying the solenoidal and boundary conditions, these
forms also satisfy

∫
1

−1

V(1)
∗

𝑞
⋅ V(2)

𝑝
𝑑𝑧 = ∫

1

−1

V(2)
∗

𝑞
⋅ V(1)

𝑝
, 𝑑𝑧 = 0,

∫
1

−1

V(1)
∗

𝑞
⋅ D

2V(2)

𝑝
𝑑𝑧 = ∫

1

−1

V(2)
∗

𝑞
⋅ D

2V(1)

𝑝
, 𝑑𝑧 = 0.

(16)

that result in some desirable decoupling features in the
resulting system of equations. It can be shown that, associated
with these forms, the number of quadrature nodes𝑁

𝑧
and the

number of solenoidal bases 𝑄 should be related in the least
by𝑁

𝑧
= 𝑄 + 4 for the linear case and𝑁

𝑧
= 3/2𝑄 + 5 for the

nonlinear case to render the numerical quadrature exact in
the inner product integrals.

4. Numerical Implementation

When a representation of the solenoidal flow field in the form
of (6) and (7) is substituted into the governing equations (2)
and (3), the residuals arise:

𝑅u = −
𝜕u
𝜕𝑡

− (u ⋅ ∇) u − ∇𝑝 + PrRa𝜃e
𝑧

+ Pr∇2u − 2PrΩe
𝑧
× u,

𝑅
𝜃
= −

𝜕𝜃

𝜕𝑡
− (u ⋅ ∇) 𝜃 −

u ⋅ e
𝑧

2
+ ∇

2
𝜃.

(17)

The projection of the residual onto the dual space spanned by
V(1)

𝑝
, V(2)

𝑝
, and 𝑇

𝑝
is annulled,

(V, 𝑅u) = 0, (𝑇, 𝑅
𝜃
) = 0, (18)

in the Galerkin procedure to yield the weak form:

(

(V(1)

, V̂(1)

) 0 0

0 (V(2)

, V̂(2)

) 0

0 0 (𝑇, 𝑇̂)

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A

×(

𝑎̇
(1)

𝑎̇(2)

𝑏̇

) + (

𝑐(1)

𝑐(2)

𝑑

)

= Pr(

(V(1), (∇2 − 2Ω𝑒
𝑧
)V̂(1)) (V(1), −2Ω𝑒

𝑧
V̂(2)) 0

(V(2), −2Ω𝑒
𝑧
V̂(1)) (V(2), (∇2 − 2Ω𝑒

𝑧
)V̂(2)) Ra (V(2), 𝑇̂𝑒

𝑧
)

0

(𝑇, V̂(2) ⋅ 𝑒
𝑧
)

2Pr
(𝑇, ∇
2

𝑇̂)

Pr

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B

× (

𝑎(1)

𝑎(2)

𝑏

) ,

(19)

where 𝑎(1), 𝑎(2), and 𝑏 are the time dependent expansion
coefficients, and 𝑐(1), 𝑐(2), and 𝑑 are the projections of the
nonlinear terms.

4.1. Linear Stability Analysis. The solenoidal bases and the
projection procedure are tested on the linear stability of the
conductive (no-motion) state leading to the critical values
when the convective motion just sets in. This amounts to
elimination of the terms 𝑐(1), 𝑐(2), and 𝑑 in (19). The resulting
linear system of ordinary differential equations reduces to a
generalized eigenvalue problem

𝜆AE = BE, (20)

for the eigenvalues 𝜆 when a time dependence in the form

[𝑎
(1)
; 𝑎

(2)
; 𝑏] = E𝑒𝜆𝑡 (21)
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is assumed. As the rightmost eigenvalue in the complex plane
crosses the imaginary axis as Rayleigh number is varied for
a given wavenumber pair (𝑘

𝑥
= 2𝜋/𝑠

𝑥
, 𝑘

𝑦
= 0) or (𝑘

𝑥
=

0, 𝑘
𝑦
= 2𝜋/𝑠

𝑦
), the system becomes unstable to infinitesimal

perturbations.The resulting critical Rayleigh numberRa
𝑐
and

critical wavenumber 𝑘
𝑐
values form the marginal stability

curve.

4.2. Nonlinear Regime. The computation of nonlinear terms
consumes more time in Fourier-Legendre space than in real
space. Thus, all nonlinear terms are computed in real space
and then projected onto Fourier-Legendre space to obtain the
projections of the nonlinear terms

𝑐
1,2

= (V(1,2)

, (u ⋅ ∇) u) , 𝑑 = (𝑇, (u ⋅ ∇) 𝜃) . (22)

The derivatives of velocity and temperature fields in hori-
zontal directions are calculated basically by the Fast Fourier
transform (FFT), while polynomial differentiation matrix
based on GLL collocation points is used for the vertical
direction. The details and the associated MATLAB files for
the polynomial differentiation can be found in [25].

For time discretization, semi-implicit numerical integra-
tion is used. The nonlinear and driving (buoyancy) terms are
integrated explicitly using the third-order Adams-Bashforth
scheme, while diffusive terms are integrated implicitly by
Adams-Moulton scheme [26].

5. Results

A Fortran code is developed for the implementation of the
proposed numerical procedure. It is tested for possible bugs,
and resolution independence is constantly monitored. A
linear stability analysis is conducted first, and the results are
compared with the literature. The critical wavenumber (𝑘

𝑐
)

and Rayleigh number (Ra
𝑐
) values are listed in Table 1 for the

rightmost eigenvalue just crossing the imaginary axis. Some
most critical values, Ra∗

𝑐
and 𝑘∗

𝑐
, corresponding to the least

Ra
𝑐
value on eachmarginal stability curve as indicated by “+”

markers in Figure 2, are shown in Table 2.These are obtained
by the selection of (𝑛 = 0, 𝑚 = 1) (or equivalently (𝑛 =

1, 𝑚 = 0) due to degeneracy in the horizontal directions)
as defined in (8).They are in agreementwith the known linear
stability results for the rotating Rayleigh-Bénard problem. In
addition, the most critical wavenumber and the correspond-
ing Rayleigh number variation with rotation, namely, 𝑘∗

𝑐
(Ω)

and Ra∗

𝑐
(Ω), are presented in Figures 3 and 4, respectively.

There is a good agreement between the computed critical
values and the literature [5, 6, 27]. Linear stability analysis
can be performed with high accuracy by means of the
proposed method. While typical runs for the linear stability
calculations take a few CPU seconds, nonlinear simulations
require higher CPU time because of time integrations and
Fourier-Legendre transforms to be performed in high spatial
resolutions. For example, typical computing time is approxi-
mately 3 hours for integrating 100 nondimensional seconds a
long with𝑁

𝑥
×𝑁

𝑦
×𝑁

𝑧
= 16 × 16 × 20 resolution in 3.0GHz

CPU unit.

Ω𝑧

𝐿𝑥

𝐻 = 2ℎ

𝐿𝑦

𝑥

𝑦
𝑧

Figure 1: Convective box influenced by rotation.

Nonlinear simulations are performed for varying control
parameters, and the Nusselt number is computed. It is
observed in Figure 5(c) that limited rotation in moderate
Prandtl fluids stabilizes the convection and suppresses the
oscillations in high Rayleigh number flow.This phenomenon
is also observed in [9]. Increased heat flux is caused by the
stabilizing effect of limited rotation in the range Ω = 0–30.
Coriolis force can balance horizontal temperature gradients,
and, hence, less potential energy is released by horizon-
tal temperature gradients. On the other hand, increasing
rotation rate destabilizes the system and introduces new
oscillatory motions for Ra −Ra

𝑐
= 20000 [12]. Increased heat

flux with limited rotation is also observed for low Rayleigh
number flows in Figure 5((a) and (b)), but this increment is
very low because convection is still two-dimensional at these
parameter values. Heat flux starts decreasing at Ω = 10 for
Ra − Ra

𝑐
= 2000, Ω = 30 for Ra − Ra

𝑐
= 10000, and Ω = 30

for Ra−Ra
𝑐
= 20000 because horizontal velocities destabilize

the system with increasing rotation. In [9], it is indicated
that rotational constraint balances the nonlinear processes
for up to Ta ≤ 10

3.6(Ω ≈ 31) for convection between free
boundaries. More recent work conducted by [12] reported
that rolls are unstable for Pr > 1 beyondΩ ≈ 27.

Coriolis term depends linearly on the horizontal velocity.
Hence, increasing rotation rate magnifies the toroidal energy
(that is associated withV(1)

𝑝
component of the solenoidal flow

field) as shown in Figure 6. For all Rayleigh number values,
increasing rotation absorbs the poloidal energy and stim-
ulates the toroidal energy. Increase in toroidal energy is
very rapid for Ra − Ra

𝑐
= 2000 and Ra − Ra

𝑐
= 10000

because both cases correspond to steady two-dimensional
convection regime in nonrotating system. Limited Coriolis
force, for example Ω = 10, does not affect the roll struc-
ture but introduces three-dimensional motions as it is seen
in Figures 7 and 8.Thismotion appears in oblique angle to the
roll direction as also observed by [8]. On the other hand, Ra−
Ra

𝑐
= 20000 case exhibits a different behavior. Since it cor-

responds to periodic motion regime in nonrotating system,
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Table 1: Critical wavenumber and rayleigh number values at which convection just sets in (Ω = 0).

𝑘
𝑐

1 2 3 3.117 4 5 6 7
Ra

𝑐
5854.48 2177.41 1711.27 1707.76 1879.25 2439.32 3417.98 4918.54

Table 2: Comparison of the most critical values with Chan-
drasekhar’s calculation [5] at 8 × 8 × 8 resolution.

Ω (Ta = 4Ω2) Ra∗

𝑐
Ra∗

𝑐
[5] 𝑘∗

𝑐
𝑘∗

𝑐
[5]

5 1756.34 1756.6 3.16 3.15
50 4712.04 4713.1 4.78 4.80
500 70843.90 71132 10.79 10.80

3 4 5 6
1000
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3000

4000

5000

6000

7000

8000
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Ra

2.5 3.5 4.5 5.5

Ω = 50

Ω = 30
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Ω = 5
Ω = 10

Clever and Busse 1979

Figure 2: Marginal stability curves as effected by different rotation
rates.

it contains small-scale motions and vertical vorticity com-
ponent. The motion tends towards two-dimensional convec-
tion with increasing rotation and toroidal energy sharply
decreases, while poloidal energy conversely increases forΩ ≈

15. It is caused by the stabilizing effect of limited rotation as
explained above. This effect also increases the heat transport
because of increasing poloidal component. As vertical shear
increases, Ω ≥ 15 for low Rayleigh and Ω ≥ 30 for high
Rayleigh numbers, toroidal motion dominates and brings
unstable character.

6. Conclusions

In this work, solenoidal spectral approach is used to study
rotating Rayleigh-Bénard convection numerically for a range
of parameter values. The expansion of the velocity field in
terms of the solenoidal bases and the subsequent projection
onto the solenoidal dual space provide the automatic satis-
faction of the divergence-free condition and the elimination
of the pressure. Removal of these common algorithmic
difficulties helps to focus on the extraction of the dynam-
ics hidden within the model dynamical system equations.

3
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Scheel 2007

𝑘
𝑐

100 101 102 103

Ω

Figure 3: The critical wavenumber (𝑘∗

𝑐
) variation with rotation:

𝑘∗

𝑐
(Ω).

105

Ra
𝑐

103

103100 101 102

104

Calculated value
Clever and Busse 1979
Scheel 2007

Ω

Figure 4: The critical Rayleigh number (Ra∗

𝑐
) variation with

rotation: Ra∗

𝑐
(Ω).

The current formulation provides a robust numerical tool
to seamlessly investigate the linear and nonlinear regimes in
rotating Rayleigh-Bénard convection. Form of the resulting
dynamical system facilitates the use of numerical tools from
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Figure 6: Toroidal and poloidal kinetic energy variation with
rotation, Pr = 0.71.

the dynamical system and bifurcation theory that is a natural
extension of this work.
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