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The precise estimation of solar radiation is of great importance in solar energy applications with respect to installation and capacity.
In estimate modelling on selected target locations, various computer-based and experimental methods and techniques are
employed. In the present study, the Multilayer Feed-Forward Neural Network (MFFNN), K-Nearest Neighbors (K-NN), a
Library for Support Vector Machines (LibSVM), and M5 rules algorithms, which are among the Machine Learning (ML)
algorithms, were used to estimate the hourly average solar radiation of two geographic locations on the same latitude. The input
variables that had the most impact on solar radiation were identified and grouped as a result of 29 different applications that
were developed by using 6 different feature selection methods with Waikato Environment for Knowledge Analysis (WEKA)
software. Estimation models were developed by using the selected data groups and all input variables for each target location.
The results show that the estimations developed with the feature selection method were more successful for target locations, and
the radiation potentials were similar. The performance of the estimation models was evaluated by comparing each model with
different statistical indicators and with previous studies. According to the RMSE, MAE, R2, and SMAPE statistical scales, the
results of the most successful estimation models that were developed with MFFNN were 0.0508-0.0536, 0.0341-0.0352, 0.9488-
0.9656, and 7.77%-7.79%, respectively.

1. Introduction

Energy, which is an effective parameter in the development of
countries, is increasing rapidly with industry, technological
advances, and increasing population. Not every country has
adequate energy resources to meet the need for energy, and
the rapid increase in energy consumption forces countries
to turn to alternative sources in energy supply. For this rea-
son, countries prefer renewable energy sources such as solar,
wind, hydro, bio, hydrogen, geothermal, and tidal energy to
meet their energy needs instead of conventional energy
sources [1]. Solar energy, which plays a critical role in elec-
tricity generation with each passing day, has become one of
the promising renewable energy sources attracting the
attention of countries because it is clean, unlimited, and
sustainable compared to fossil fuels. As a result of this,

investments in solar energy for electricity generation are
increasing rapidly in recent years with technological
advances in solar energy, global climate change, dependence
on other countries, and other environmental factors. In this
context, photovoltaic (PV), as one of the usages of solar
energy application areas, is intensively applied in order to
produce electricity [2, 3].

PV, which is used reliably in electricity generation, has
been growing rapidly in the world for more than 40 years,
and the amount of electrical energy produced from PV power
plants has reached 480GW [4]. Before designing and model-
ling a PV system in a selected geographical area, solar radia-
tion (SR) data must be measured as the most important input
value, where the feasibility of the designs made in terms of
investment can be evaluated according to this data. This
value is not only necessary in PV designs but is also the most
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important parameter in many scientific and engineering
works on solar energy practices [5]. For this reason, it is the
most accurate method to obtain long-term data in a selected
special geographic area. However, measuring the SR every-
where is often not possible, as it requires costly, long, and
precise processes. In addition, radiation values cannot be
measured in an accurate way in most countries because the
measurements can only be made in certain areas. For this
reason, experimental, statistical, and Artificial Intelligence-
(AI-) based estimation methods were developed to calculate
the value of SR worldwide [6–8]. ML algorithms, which are
a subfield of AI, are one of the most common methods used
in estimation studies.

Many studies have been conducted in recent years based
on ML algorithms in different geographic areas of the world
to estimate SR. In these studies, algorithms including Artifi-
cial Neural Network (ANN), Support Vector Machines
(SVMs)/(Support Vector Regression) SVR, K-NN, Linear/-
Nonlinear Regression, M5, and Random Forests have been
used frequently [9]. However, estimation models were devel-
oped in these studies by selecting a specific geographical area
of a country or different geographical locations in the country
[10]. Before the development of estimation models for a
selected geographic location, it must be decided which
hourly, daily, and monthly average global radiation values
that fall onto a certain horizontal surface will be used [11].
Notton et al. [12] recommended that the monthly average
data should be used if preliminary modelling or draft design
is required to be done, and the daily average data can be used
if a more comprehensive design is to be established. How-
ever, they also indicated that it is necessary to use hourly
average or shorter-scale data in more precise and result-
oriented designs. Zhang et al. [13] explained that the estima-
tion processes of studies with hourly data compared with
daily and monthly data are more difficult and complex. For
this reason, estimation models made with hourly data are less
common since they contain more difficult and complex pro-
cesses. After determining the input data according to the type
of work that will be carried out, the SR values of the target
area can be estimated by using one [14], multiple [15], or
hybrid [16] ML algorithms. Different solutions were sought
for Global Solar Radiation (GSR) estimation problems in
developed models by making changes on the functional
structure and architecture of one single ML algorithm by
comparing multiple algorithms or by working two or more
AI methods together.

It is possible to classify the planned studies in which the
ML method is used in GSR estimation in three different cat-
egories according to the measurement time intervals of SR:
Monthly Average Global Solar Radiation (MAGSR), Daily
Average Global Solar Radiation (DAGSR), and Hourly Aver-
age Global Solar Radiation (HAGSR). HAGSR- [17, 18],
DAGSR- [19–22], and MAGSR- [23–26] based estimation
models were developed by using one single ML algorithm,
and it was noticed that the ANN algorithm was used fre-
quently compared to other algorithms because of its flexible
structure and accuracy. On the other hand, studies on the
methods in which multiple ML algorithms can be analyzed
and used together at the same time are increasing rapidly.

In these types of studies, a clear idea can be achieved on the
effectiveness of each ML algorithm on the dataset used, and
the most successful models can be compared and evaluated.
In this context, Pang et al. [27] estimated GSR comparatively
by using ANN and Recurrent Neural Network (RNN) ML
algorithms in 10-, 30-, and 60-minute time zones. Li et al.
[28] developed estimation models with the help of seven-
year measured hourly data with the Multivariate Adaptive
Regression Spline (MARS) ML algorithm to estimate
HAGSR and compared their results obtained in Hong Kong
with the ANN and logistic regression algorithms. They
reported that ANN achieved superior performance com-
pared to the other algorithms. Khosravi et al. [29] developed
the most successful estimation models to estimate HAGSR
for two different network groups on the Iranian island of
Abu Musa by using MFFNN, Radial Basis Function Neural
Network (RBFNN), SVR, Fuzzy Inference System (FIS),
and Adaptive Neuro-Fuzzy Inference System (ANFIS) ML
algorithms. The first network was planned with five inputs,
and the second network was planned with one single input,
and it was reported that the SVR reached superior estimative
accuracy than other algorithms on both networks. Lotfinejad
et al. [30] investigated the DAGSR of different cities of Iran
by using Bat Neural Network (BNN), Generalized Regression
Neural Network (GRNN), and Neuro-Fuzzy (NF) algo-
rithms. They reported that the models developed with the
recommended BNN algorithms performed better than other
algorithms. Meenal and Selvakumar [31] examined a com-
parative DAGSR estimation model among SVM, ANN, and
experimental models by identifying the most suitable input
variables from nine input data from four different cities of
India and showed that SVM was more successful than the
other algorithms. Loutfi et al. [32] developed ten different
HAGSR estimation models in the city of Fes, Morocco, with
the help of nine different input variables from 2010 to 2014
five-year with Multilayer Perceptron (MLP) and Neural
Autoregressive with Exogenous Inputs (NARX) algorithms.
Among the models developed, they contended that the most
successful estimation model was the model developed with
NARX. Lazzaroni et al. [33] compared the GSR estimation
models that were developed according to hourly, daily, and
monthly time zones with SVR and Extreme Learning
Machine (ELM) ML algorithms by using three-year hourly
data in Milan, Italy, with the K-NN algorithm. Long et al.
[34] investigated the estimation of DAGSR by using ML-
based ANN, K-NN, SVM, and Multivariate Linear Regres-
sion (MLR) algorithms and made a comparative analysis of
data-driven algorithms. Ozgoren et al. [35] compared the
estimation models developed with the ANN and Multi-
Nonlinear Regression (MNLR) algorithms to estimate
MAGSR in 31 cities of Turkey using five-year input data col-
lected between 2002 and 2006. Moghaddamnia et al. [36]
estimated the DAGSR by using the different meteorological
parameters of Britain’s Brue Basin by using the Local Linear
Regression (LLR), NARX, MLP, Elman Network, and ANFIS
ML algorithms.

In the present study, the purpose was to comparatively
analyze the HAGSR of two geographical provinces located
on the same latitude of the Mediterranean Region by using
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four different ML algorithms MFFNN, K-NN, M5 rules, and
SVR-based LibSVM library. Another purpose was to use the
WEKA software program to determine the features of input
data that has the most impact on SR. For this purpose, the
best features were determined in five groups by developing
twenty-nine different applications with the help of six feature
selection functions. The eventual models of ML algorithms
that were used in the study were developed according to the
output groups of feature selection functions. HAGSR estima-
tion models were evaluated with respect to among them-
selves and also on the basis of the algorithm that was used,
and the results were then compared with similar studies. In
addition, unlike other previous studies, the present study
developed estimation models and evaluated their perfor-
mance by using the classical SVR algorithm and LibSVM
software, which are similar to each other. The framework
outlining how the data mining processes and four different
ML algorithms are used in this study to evaluate the solar
radiation potential of two provinces in the same latitude is
shown in Figure 1. The WEKA software was used in data
mining processes such as data preprocessing and feature
selection, and Matlab R2017b software was made use in
modelling studies developed with ML algorithms used in
SR estimation.

The rest of the study is organized as follows. The prov-
inces for which the models were developed and the meteoro-

logical and categorical dataset used in the study are defined in
Section 2. The details of the feature selection processes that
were used to determine the most appropriate input data
groups, the methodologies of the MFFNN, SVR-LibSVM, K
-NN, and M5 rules algorithms, the architectural and func-
tional structures of the developed models, and the methods
applied are also explained in this chapter. Section 3 includes
the results and comparative analyses of the estimation
models developed with the ML algorithm used for each input
data group. The HAGSR estimation performance of the two
provinces, which are located in the same latitude, was evalu-
ated with multiple statistical error methods and was also
compared with previous similar studies. The results of this
study and its contribution to the literature are summarized
in Section 4.

2. Materials and Methods

In this section, the evident features of the two selected
provinces and the editing of data to be used in ML models
are explained. Then, the selection procedures of the most
effective input groups are mentioned using feature selection
processes. The input data were determined in five different
groups at the end of the selection process, and the develop-
ment processes of the best ML models were explained for
each group. In addition, the structural characteristics of the
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raw data
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SR Estimation Processes

Arranged
input data

Application of 6
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to determine the
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Figure 1: The framework of methodology of the present study.
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ML algorithms that were used in the comparative estimation
of HAGSR and the statistical scales that were used in evaluat-
ing model performance are discussed in detail.

2.1. Study Area and Preparation of Database. The provinces
of Kahramanmaras and Isparta were selected as the study
areas by considering the climatic characteristics, elevation,
various different geographical characteristics, and in particu-
lar latitude. The selected provinces are located in the Medi-
terranean Region and have a high solar power potential
with an average annual sunshine time of 2956 hours and an
average annual amount of solar energy of 1390 kWh/m2

[37]. The location of the selected provinces in the Mediterra-
nean Region and the latitude coordinates of meteorological
measurement stations are given in Figure 2.

Radiation data is the most important parameter used in
solar energy-based systems. However, the radiation data
value cannot be measured at every measuring station across
the country; instead it is measured at a limited measuring sta-
tion. SR was measured for certain locations by the Turkish
State Meteorological Service (TSMS), which is a government
agency with a large network of stations in Turkey. In the
study, the data collected for the target provinces consisted
of meteorological data measured by TSMS between 2002
and 2006. These data used were the hourly average data that
were measured every 5 minutes and meteorological data
from measuring stations collected from Hourly Pressure (P
), Hourly Sunshine Duration (HSD), Hourly Humidity (H),
Hourly Temperature (T), Hourly Wind Speed (WS), and
Hourly Solar Irradiance (HSI). 3D plots showing the change
of SR for both monthly and seasonal measurements of yearly
intervals of Kahramanmaras and Isparta are given in
Figures 3 and 4. The annual distributions of the SR values
measured in these charts are given in detail on an hourly
basis. The specific characteristics of geographical and meteo-
rological data of the target provinces are given in Table 1.

The data preprocessing that will improve the quality of
the raw data to be used in the study is one of the most impor-
tant processes that have a direct positive effect on the perfor-
mance of all computer science-related algorithms [38]. Since
ML algorithms are generally data-focused structures, several
operations like cleaning, scaling, reduction, and normaliza-
tion have significant effects on the accuracy of the estimation
[39]. In the present study, four categorical data were included
in the meteorological dataset including year of measurement

(year), month of the year (month), day of the month (day),
and hour of the day (hour). Geographical data were not used
since the effect of the latitude was evaluated. Measurement
time intervals of the other meteorological data were deter-
mined according to HSI measurement time intervals. The
data between 06:00-17:00 hours for January and February;
06:00-18:00 hours for March, April, October, November,
and December; and 07:00-19:00 hours between May and
September were selected. Factors such as measurement time
differences between years, variability of the measured time
zones of each month, and winter time-summer time were
effective in selecting the time ranges. Any missing data was
calculated by taking the arithmetic average of the data in
the same time frames of the previous and following years,
and the data that were calculated in this way constituted
approximately 4% of all data. A total of 23442 SR data were
obtained for each province. After the raw data were arranged
and determined, min-max normalization was applied and
scaled. The normalization formula applied is given in
equation (1). In this formula, each input (xi) value was
normalized (Xn) linearly between the 0 and 1 range by find-
ing the minimum (xmin) and maximum (xmax) values of the
raw dataset [40].

Xn =
xi − xmin

xmax − xmin
: ð1Þ

In data selection, since different estimation results are
obtained each time when a certain year range is used in
training the model and the remaining years are used to test
the model, it was ensured that all data at hand were ran-
domly allocated hourly with a specifically coded program,
instead of determining year-based training and test data. In
this way, it was aimed that the output results of the estima-
tion models were not affected by the data selection by
providing a homogeneous distribution in the input data
according to years. The number and basic characteristics of
the training and test data, which were determined hourly
for each province, are given in Table 2.

2.2. Selection of the Best Input Data Groups with WEKA.
Since the data pool used in ML-based GSR estimation studies
are quite extensive, the characteristics of the data and their
relations with each other affect the output performance of
models. Although some data have positive effects on the

Mediterranean Sea

TURKEY

Figure 2: Geographical positions of target provinces and measurement stations.

4 International Journal of Photoenergy



1200

1000

800

600

400

200

0
0

2

Month

4
6

8
10

12 6
8

10
12

Hour
14

16
18

2002

So
la

r R
ad

ia
tio

n 
(W

/m
2 )

20

1000

900

800

700

600

500

400

300

200

100
2

Month

4
6

8
10 8

10
12

Hour
14

16
18

200222

20

(a)

1000

800

600

400

200

0
0

2

Month

4
6

8
10

12 6
8

10
12

Hour
14

16
18

2003

So
la

r R
ad

ia
tio

n 
(W

/m
2 )

20

900

800

700

600

500

400

300

200

100

6
8

10
12

Hour
14

16
18

2

Month

4
6

8
10

20032003

20

(b)

Figure 3: Continued.
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Figure 3: The 3D distribution plots of HAGSR of Isparta measured for the years (a) 2002, (b) 2003, (c) 2004, (d) 2005, and (e) 2006.
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Figure 4: Continued.
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Figure 4: Continued.
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output, some others may have negative effects, and some
have no effect. For this reason, determining the most effective
data features on output prior to the modelling process will
decrease the dimensionality of the data employed in this
process, facilitate the interpretation of the estimation, and
shorten the modelling process increasing the estimation
accuracy [10, 41]. The methods and techniques used in the
selection of the features affecting SR the most as well as the
methods and applications used in the current study are com-
pared with similar ML-based studies in Table 3. In feature
selection methods used commonly, the features that have

the greatest effect on the SR data are found and a new input
dataset is determined. Unlike in previous studies, different
input data groups were created in this study by evaluating
the different input parameters affecting SR data with multiple
applications that were developed by the selection methods
applied.

In this study, the open-source WEKA program was used
to select the most affected features of SR. This program was
developed by Waikato University by using the JAVA
programming language. Two feature selection methods
based on the wrapper and filter approaches were used to
select features that most influenced the SR data in the
program. Although the filter approach uses simple, fast,
and scalable methods, the wrapper approach processes the
data by using classification-based techniques. The relations
between different features selected in each application and
the classifier models were evaluated in this study in the selec-
tion processes [43].

Instead of processing the data with one single feature
selection method, it was aimed to evaluate the effect of input
variables on SR by developing multiple applications in each
function by using six different feature selection functions
based on filter and wrapper approaches. Three of these work
as wrapper approach-based functions, and the other three
work as filter-based functions. Classifier Subset Evaluator
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Figure 4: The 3D distribution graphs of HAGSR of Kahramanmaras measured for the years (a) 2002, (b) 2003, (c) 2004, (d) 2005, and (e)
2006.

Table 1: Specific characteristics of geographical and meteorological data of each province.

Selected
location

Geographical data Meteorological data

Lat.
(Deg.)

Lon.
(Deg.)

Alt.
(m)

Area
(km2)

T (°C) P (hPa) H (%) WS (m/s)
HSD
(hour)

HSI (W/m2)

Min Max Min Max Min Max Min Max Min Max Min Max

K.Maraş 37.576 36.915 872 14336 -8.2 43.9 928.3 966.1 0 99 0 9.9 0 1 0.2 1028.8

Isparta 37.785 30.568 1050 8933 -14 36.8 876 918.9 7 99 0 10.1 0 1 0.1 1046.7

Table 2: Basic structure of the training and test input data
determined hourly to be used in modelling.

Meteorological and
Categorical Time range

Training data Test data

Total 17584 5858

2002-2006

Rate ±75% ±25%
Selection type Random Random

Input data
Year, Month, Day, Hour, T ,

P, H, WS, HSD

Output data SR

9International Journal of Photoenergy



(CSE), Wrapper Subset Evaluator (WSE), and Classifier Fea-
ture Evaluator (ClassAE) are based on the wrapper approach;
and Correlation-based Future Selection Subset Evaluator
(CfsSE), Correlation Feature Evaluator (CorrAE), and Relief
Feature Evaluator (RAE) are filter-based selection functions.
In addition, two basic methods (i.e., random and compre-
hensive search) were used based on the type of feature
selection function. Some selection functions support multiple
search methods, and some others support only one. Search
methods such as Best-First (BF), Evolutionary Search (ES),
Firefly Search (FS), Elephant Search (ELS), Ant Search
(AE), Linear Forward Selection (LFS), Greedy Stepwise
(GS), and Ranker were used in this respect. However, ten dif-
ferent ML algorithms like Multi-Layer Perceptron (MLP),
Linear Regression (LR), Simple Linear Regression (SLR),
M5 rules, M5P, Decision Table (DT), Random Forest (RD),
Additive Regression (AR), Elastic Net Regularization
(ENR), and K-Nearest Neighbors Classifier (IBk) were used
as classifiers in wrapper-based feature selection functions.

In the selection process of the most effective input vari-
ables, 29 different applications were developed by using a
total of six different feature selection functions. A 10-fold

cross-validation method was used in all applications. The
screenshot of the application developed by using the CfsSE
feature selection function with the BF search method is given
in Table 4. It is seen in the table that the year, H, and HSD
data were most effective on SR, and the other data had no
effect.

Six different data groups were created for each feature
selection function, with variables that most affected the SR.
The input variables that affected the SR the most according
to the selection functions for the provinces for which the
models were developed are given in Tables 5 and 6. In
processes where more than one selection was applied, the
selection of the most effective features was determined by
evaluating the number of applications and the impact totals
of the selected variables. Consequently, the feature was not
included in the data group if the impact level on SR was neg-
ative, neutral, or very low. Some feature variables calculated
for selection functions and the number of inputs were similar
in selection processes. The results of the CSE and WSE
feature selection functions in Isparta and the results of the
CSE and RAE feature selection functions in the data of
Kahramanmaras were similar.

Table 3: Comparison of feature selection methods and techniques used in previous studies and those used in the present study.

ML algorithm Authors [Ref.]
Feature selection

method/algorithm/application
Selection number of the best

input data groups

ANN Yadav et al. [42] WEKA/J48 1

SVM-ANN Meenal and Selvakumar [31] WEKA/Greedy Stepwise 1

MLP-NNARX-ANFİS Moghaddamnia et al. [36] Gamma test 1

ANN Ozgoren et al. [35] MNLR 1

MARS Li et al. [28] Sensitivity analysis/MARS 1

ANN-SVM-KNN-MLR Long et al. [34] Linear, Pace, and SVM regression 3

BNN-GRNN-ANFIS Lotfinejad et al. [30] Principal component analysis 1

MFFNN-SVR-KNN-M5
rules

Present study
WEKA/6-feature selection function/10-ML

algorithm/29-application
6

Table 4: Output of a sample feature selection process applied to the dataset of Isparta.

Evaluator weka.attributeSelection.CfsSubsetEval -P 1 -E 1

Search weka.attributeSelection.BestFirst -D 1 -N 5

Instances 17584

Attributes 10 (Year, Month, Day, Hour, Pressure, Temp, Humidity, W.Speed, H.S.Duration, S.Radiation)

Evaluation mode 10-fold cross-validation

Number of folds (%) Attribute

10 (100%) 1 Year

0 (0%) 2 Month

0 (0%) 3 Day

0 (0%) 4 Hour

0 (0%) 5 Pressure

0 (0%) 6 Temp

10 (100%) 7 Humidity

0 (0%) 8 W.Speed

10 (100%) 9 H.S.Duration

10 International Journal of Photoenergy



For each province, the final data groups and feature num-
bers created to be used in estimation models to be developed
with ML algorithms as a result of feature selection processes
are given in Table 7.

2.3. MFFNN Algorithm. ANN is an ML algorithm developed
based on nerve cells specific to humans. This structure is
known as a computer-modelled version of the biological
and intellectual structure of the brain and is used frequently
in solving problems such as estimations which cannot be cal-
culated by nonlinear and classical calculation methods, time
series problems, pattern recognition, and classification [44].
For the past 50 years, many neural network architectures
have been developed based on Feed-Forward and Recurrent
Networks to be used for various purposes and in a number
of fields. Each architectural structure does not reach the same
level of success on input data [45]. For this reason, the
MFFNN ML algorithm, which was based on the Feed-
Forward architectural structure, which is suitable for the
available data structure and exhibits high performance, was
used. Since MFFNN works with the backpropagation learn-
ing algorithm to minimize error, it has greatly increased
learning success [25]. The Matlab R2017b software program
was used in the development and modelling of this network.
The architectural structure and working principles of the
MFFNN that was used in the modelling studies are given in
Figure 5.

GR1-GR5 represents the input data groups selected at the
end of the feature selection process, and GR6 represents all

input data that did not undergo any selection process. The
architectural structure of the neural network was created in
three layers, and a 5-iteration training model was developed
for each neuron by using 1-50 neurons in the hidden layer.
No significant increase was detected in the operating perfor-
mance in neurons over 50, and the working time became
considerably longer. In the developed MFFNN models, each
input data (Xj) connected to neurons between layers was
multiplied by a weight value (Wij), added by bias (bi), and
the net input values (Ni) were calculated. The formula of
the net input is given in

Ni = 〠
m

j=1
WijXj

� �
+ bi: ð2Þ

Net input is activated with a transfer function once it is
calculated [46]. A hyperbolic tangent sigmoid transfer func-
tion (Tansig) was used between the input layer and the hid-
den layer and between the hidden and the output layer. By
using Tansig, net-input values are scaled in the -1 to +1
range. When determining the transfer function, the logistic
sigmoid (Logsig) or Tansig function was determined to be
available in the hidden layer, while Tansig or Linear (Purelin)
functions were available in the output layer. Choosing a func-
tion other than these significantly reduced the performance.
The formula for the Tansig transfer function is given in

Tansig Nið Þ = 2
1 + e−2Ni

− 1
� �

: ð3Þ

The Levenberg-Marquardt Backpropagation (Trainlm)
training function was used in the MFFNN. Other training
functions such as Trainbr (Bayesian Regularization Backpro-
pagation) and Traincgb (Conjugate Gradient Backpropaga-
tion) were also tested. However, since the best performance
was provided with Trainlm, this training function was
selected.

2.4. SVR Algorithm. SVM is known as the ML algorithm that
was developed by Vapnik and commonly used in classifica-
tion problems. The smallest subsets of training data are used
to find the best prediction model between two classes with
SVM [47]. However, since it was not adequate in multiclass

Table 5: Input features affecting the SR the most in Isparta.

Feature selection
function

Selected features
Total number of

feature

CfsSE Year, H, HSD 3

ClassAE
Year, Month, Hour, P, T , H

, WS, HSD
8

CSE
Year, Month, Day, Hour, P,

T , HSD
7

CorrAE Day, T , WS, HSD 4

RAE Month, Hour, HSD 3

WSE
Year, Month, Day, Hour, P,

T , HSD
7

Table 7: Final data groups created to be used in estimation models
of the two provinces.

Selected
groups

Kahramanmaras Isparta
Feature
selection
function

Number
of feature

Feature
selection
function

Number
of feature

GR1 CfsSE 5 CfsSE 3

GR2 ClassAE 5 ClassAE 8

GR3 CSE-RAE 4 CSE-WSE 7

GR4 CorrAE 4 CorrAE 4

GR5 WSE 6 RAE 3

Table 6: Input features affecting the SR the most in Kahramanmaras.

Feature selection
function

Selected features
Total number of

feature

CfsSE Year, T , H, WS, HSD 5

ClassAE
Month, Hour, T , H,

HSD
5

CSE Month, Hour, T , HSD 4

CorrAE Day, T , WS, HSD 4

RAE Month, Hour, T , HSD 4

WSE
Month, Hour, T , H,

WS, HSD
6
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estimation problems, the SVM-based SVR method was
developed. SVR uses a technique based on regression prob-
lems and based on calculating a linear regression function
in a multidimensional feature set [48]. The architectural
structure of the SVR used in modelling studies is given in
Figure 6.

The gaps between the data are kept wide in the SVR
algorithm, ideal locations are found, and errors are mini-
mized. In a dataset with a certain number of elements,
fðxa, yaÞ, a = 1, 2, 3,⋯,Mg represent the input vector xaϵ
Rd , respectively, yaϵR xi represents the corresponding output
vector, and M represents the total number of elements [49].
The formula of the SVR linear function is given in

y = f xð Þ =Wtφ xð Þ + b: ð4Þ

φðxÞ represents the nonlinear mapping function which
converts multidimensional data structures into a two-
dimensional chart, W represents the weight vector, and b
represents bias. The error function is given in equation (5).
The constant C and the ε values are determined by the user
and are defined as the estimation accuracy of the training
data.

R xð Þ = 1
2

Wk k2 + C
1
N
〠
N

i=1
yi − f xið Þj jε: ð5Þ

The equation that minimizes the error function is given
in equation (6). α∗a and αa are the LaGrange multipliers and
are referred to as the support vectors if the training vector
has a value other than zero. This structure is known as the
critical values for SVR algorithms [50]. The Kðxa, xÞ struc-
ture is called the kernel function and converts the data it
receives as input into an available form. Different types of
kernel functions are used in SVR. Three different types of

kernels, i.e., Polynomial (POL), Normalized Polynomial
(NOR-P), and Gaussian Radial Basis Functions (RBF), were
used in the models that were developed with SVR, and for-
mulas for these functions are given in equations (7)–(9),
respectively.

f xð Þ = 〠
A

a=1
α∗a − αað ÞK xa, xð Þ + b, ð6Þ

K xa, xð Þ = xaxð Þ + 1½ �d , ð7Þ

K xa, xð Þ = xaxð Þ + 1½ �dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xað Þ2 xð Þ2

q , ð8Þ

K xa, xð Þ = exp −
1
2σ2

xa − xk k2
� �

: ð9Þ

The classic SVR algorithm was also evaluated in the study
by developing estimation models with LibSVM, which is
another SVR-based method, and which is also an SVM-
SVR-based algorithm software supporting single-class SVMs,
two or multiclass SVMs, and SVRs [51]. LibSVM is preferred
because it is a method that is used quite frequently in academic
studies but not much preferred in SR prediction studies. Two
different SVR types and kernels (Epsilon SVR (E-SVR) and
Nu-SVR) were used in the estimation models that were devel-
oped with LibSVM, and RBF was used as the kernel. All pre-
diction models were developed with Matlab R2017b software
using LibSVM library interface software plugin.

2.5. KNN Algorithm. This algorithm is widely preferred in
classification problems. However, a regression-based method
was used in the present study. KNN is a nonparametric lazy

Backpropagation of Error

Feed-Forward Direction

Update weight & bias BP training
(Trainlm)

bH WH

Error

SR target

SR output

Compare

1

Output

1 Neuron1–50 NeuronGR6

Predict

Tansig transfer function Tansig transfer functionAll input dataWEKA
 input data

OutputHidden

W

b

W

b

Input
GR1

GR2

GR3

GR4

GR5

bo Wo

Figure 5: Architectural structure of MFFNN used in modelling.
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ML-based learning algorithm and estimates by searching for
the closest neighbors in the training dataset. KNN’s nonpara-
metric equation is given in equation (10), where each NkðxÞ
was taken as the neighbor K of x data. In the formula, the yi
value represents the target output for each xi training data.

ƒk xð Þ = 1
K

〠
i∈Nk xð Þ

yi: ð10Þ

Each new data intended to be estimated is looked at in the
neighborhood of K from the previous data with a KNN. The
distance between any data value and all values in the training
dataset is calculated and then the nearest K training data
values were determined. The average of the target output
values is estimated for these values [52, 53]. The Euclid func-
tion was used for the calculation of the distance. The formula
for the Euclid Function is given in equation (11). Care should
be paid in choosing the K value; small values should be used
since the model tends to overfitting if the selection is too high
[54]. In the present study, the K value was taken as 1, 2, 3, 4,
6, and 10, and six different KNN models were developed for
each data group. The model was deemed to over fit with a
K value of more than 10. The linear nearest neighbor (Line-
arNN), which is a rough force-based search algorithm, was
also used in the study. With this structure, the distance
between each point pairs was found in the dataset.

Euclidean =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
K

i=1
xi − yið Þ2

vuut : ð11Þ

2.6. Rule-Based M5 Algorithm. The M5 algorithm was devel-
oped by Quinlan as an advanced version of the Classification
and Regression Tree (CART) [55], which is based on a binary
decision tree structure developing a relation between depen-
dent and independent variables of tree leaves creating a linear
regression model on each leaf to estimate the value of the

samples reaching the leaf. The algorithm is established on
two structures, which are the decision tree and the linear
regression. The best leaf is determined as the rule in the M5
algorithm, and pruning and dividing occur in two stages. In
the dividing operation, the dataset at hand is divided into sub-
sets to create a decision tree. It is also ensured in this process
that numerical features are constantly estimated on each node
by using a linear regression function in leaf nodes [56]. Stan-
dard deviation is used to find the error in the relevant node,
and the error is seen to decrease here at the desired rate for
each feature. The division ends if there is little change in the
values of the samples that reach a node or if the number of
samples decreases too much [57]. The Standard Deviation
Reduction (SDR) formula is given in equation (12), where T
is defined as the set of feature values reaching the node, Ti
is the feature values taken from the divided node, and std is
the standard deviation [57].

SDR = std Tð Þ −〠
i

Tij j
Tj j std Tið Þ: ð12Þ

A rule-based type of the M5 algorithm was used in the
present study. In this method, which is also known as M5
rules, a series of M5 trees are created where the best leaf (rule)
is hidden, and the sample dataset with the best rule in each
cycle is removed from the training dataset without creating
the next tree. While the M5 algorithm creates one single deci-
sion tree, M5 rules create a complete tree in each cycle. M5
rules develop a series of rules based on the M5 algorithm by
using the Partial and Regression Tree (PART) algorithm [58].

2.7. Performance Analysis of ML Algorithm Models. The
widely used statistical error measurement and analysis
methods were employed in evaluating the performance of
the models that were developed with ML algorithms in pre-
dicting SR output both themselves and among each other.
The Mean Square Error (MSE), Root Mean Square Error
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Figure 6: SVR’s architectural structure.
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(RMSE), Mean Absolute Error (MAE), and Symmetric
Mean Absolute Percentage Error (SMAPE) are the error
measurement statistics used in the study. Two different sta-
tistical analysis methods, Correlation Coefficient (R) and
Coefficient of Determination (R2), were also used. The for-
mulas used for the statistical scales are given in equations
(13)–(18), respectively. In the formulas, Oi, Pi, �O, and �P
are the measured, estimated, and measurement and estima-
tion averages, respectively.

MSE =
1
n
〠
n

i=1
Oi − Pið Þ2, ð13Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
Oi − Pið Þ2

s
,

ð14Þ

MAE =
1
n
〠
n

i=1
Oi − Pij j, ð15Þ

SMAPE =
100
n

〠
n

i=1

∣Oi − Pi ∣
∣Oi∣+∣Pi ∣ð Þ ∗ 0:5

, ð16Þ

R =
∑n

i=1 Oi − �O
� �

Pi − �P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 Oi − �O
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 Pi − �P
� �2q , ð17Þ

R2 = 1 −
∑n

i=1 Oi − Pið Þ2
∑n

i=1 Oi − �O
� �2 : ð18Þ

The percentage errors are used widely to compare the
estimation performance of various datasets. MAPE, which
is an estimation error calculation method independent from

WEKA feature
selection process

Meteorological and
categorical data of

target locations

Testing
process

Test data groups
(GR-GR5)

Observed data Evaluation models
RMSE, MAE, R2, SMAPE

Best SR
estimation of
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Is the best ML
model?Y N

ML algorithms
(MFFNN, KNN, SVR

M5 Rules)

Training
process

I = 1 to K
Iteration

Train data
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Most successful
data group model

GR6
Train data

GR6
Test Data

Figure 7: Flowchart of ML-based HAGSR estimation processes.
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Table 8: Training and test estimation results of the most successful models that were developed by using the MFFNN algorithm according to
input data groups of both provinces.

Training models Testing models

Data
Hidden Training

data MSE
Test data
MSE

Validation
data MSE

Model
MSE

Model
R

RMSE MAE
SMAPE
(%)

R2
Layer Neurons

Isparta

GR1

1

18 0.0198 0.0202 0.0202 0.0201 0.7970 0.1392 0.1109 15.27 0.6547

GR2 28 0.0029 0.0031 0.0034 0.0030 0.9724 0.0559 0.0372 8.36 0.9444

GR3 48 0.0024 0.0029 0.0026 0.0025 0.9768 0.0536 0.035 7.77 0.9488

GR4 32 0.0212 0.0217 0.0216 0.0216 0.7803 0.1446 0.1124 15.29 0.6275

GR5 21 0.0059 0.0057 0.0063 0.0059 0.9442 0.0754 0.0562 8.97 0.8988

GR-6 25 0.0027 0.0030 0.0029 0.0028 0.9745 0.0542 0.0363 8.39 0.9477

Kahramanmaras

GR1

1

30 0.0134 0.0137 0.0141 0.0137 0.9049 0.1181 0.0897 14.25 0.8138

GR2 40 0.0021 0.0026 0.0026 0.002 0.9845 0.0508 0.034 7.79 0.9656

GR3 27 0.0029 0.0031 0.0028 0.0030 0.9800 0.0556 0.0385 8.23 0.9587

GR4 25 0.0145 0.0145 0.0150 0.0149 0.8959 0.1234 0.0928 14.37 0.7969

GR5 44 0.0027 0.0030 0.0033 0.0028 0.9812 0.0558 0.0386 8.29 0.9585

GR-6 39 0.0028 0.0028 0.0029 0.0029 0.9805 0.0551 0.0383 8.11 0.9595
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Figure 9: Statistical error box plots between themeasured and estimated values of (a) Isparta and (b) Kahramanmaras according to the input data.
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the scale, gives an incorrect result when measurement and
estimation values are zero or have a value quite close to zero
[59]. The SMAPE percentage scale was used to overcome
this problem since the measurement and estimation results
had values that were zero or quite close to zero.

3. Results and Discussion

Although input data is used in SR estimation studies in many
areas and location, it is not common to evaluate SR on the
same latitude and at locations that have similar geographical
characteristics. Based on the effect of latitude on sunshine
duration and the angle of coming solar rays, Darhmaoui
and Lahjouji [60] calculated that the annual solar radiation
values were at similar levels at the same latitude points of a
geographical area, with a strong relationship between opti-
mum tilt angle and target latitude value. Ahlgren et al. [61]
emphasized the relationship between annual yield and lati-
tude because there was a directly proportional relationship

between latitude and direct normal radiation where parabolic
groove collectors were located. For this reason, places that
had the same latitude coordinates were selected on the target
area, and ML algorithms were employed for high-accuracy
GSR estimation. The estimated results of the data groups
were compared by using statistical error measurement and
analysis methods including SMAPE, MAE, RMSE, and R2

to evaluate the training and testing estimation performance
of the developed models. The closer the value between the
measured and estimated in statistical error measurement
methods is to 0 and the closer to 1 in analysis methods, the
estimation accuracy of the developed models is higher [40].
The flowchart of the HAGSR estimation processes of both
provinces is given in Figure 7.

Different features were used for each data group to esti-
mate SR with the MFFNN algorithm by employing data
groups in the GR1-GR6 range. During the training process
of the models, a five-iteration structure was created for
each hidden layer neurons between 1 and 50, and 250
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Figure 10: SR estimation scatter plots of MFFNN models for (a) Isparta and (b) Kahramanmaras according to test input data.
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different models were developed for each input group,
improving 1500 different models in total. In the range of
0 to 1000 epochs, the network performance plots of the
models that reached the best estimation results in the train-
ing process of both provinces are shown in Figure 8. When
the training, validation, and testing SR estimation of each
neural network model that was developed was evaluated
statistically, the following results of the most successful
MFFNN estimation models were determined and are given
in Table 8.

As seen in Table 8, the most successful estimation models
were calculated by using GR3 for Isparta and GR2 input data
for Kahramanmaras. Although a 48-hidden layer neuron was
found as the most successful MFFNN model in the first
iteration in Isparta, a 40-hidden layer neuron was the most
successful estimation model in the second iteration in Kahra-
manmaras. The training performance of the most successful
models that were developed for Isparta and Kahramanmaras
was found to be MSE = 0:0025 and 0.0023 and R = 0:9768
and 0.9845, respectively. When the best estimation values
were compared with the actual values measured by using

the test data, the R2, MAE, and SMAPE values for Isparta
were 0.9488, 0.0352, and 7.77%, respectively; and these
values were 0.9656, 0.0341, and 7.79%, respectively, for
Kahramanmaras. The estimation performance of the two
target areas was evaluated with different scales, and both
the training and test data reached very similar results.

Boxplots between the measured and estimated values of
the study done on the selected provinces are given in
Figure 9. In these plots, the statistical error average measure-
ment results between the test input data and the estimated
values of each province can be seen. Scatter plots between
measured and estimated values of the most successful
model developed for each data group are given in
Figure 10. It is understood in both plots that a high level
of correlation was achieved for GR2, GR3, and GR6 data
groups in Isparta, and a similarly high-level relationship
was reached for GR2, GR3, GR5, and GR6 data groups in
Kahramanmaras.

Another ML algorithm that is employed in estimating
HAGSR is SVR. The results calculated with SVR-based esti-
mation models were found to be quite low. Therefore, it
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Figure 11: Estimation performance of the models developed with SVR by using 3 kernel functions for (a) Kahramanmaras and (b) Isparta.
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was decided that the classic SVR estimation results should be
evaluated with LibSVM, which is another SVR-based
method. LibSVM was preferred because it is a well-known
method in academic literature. In both methods, the most
suitable combinations were determined by creating numer-
ous models and the most successful estimation models were
developed in the selection of user-defined C (complexity
and cost parameter), epsilon (error parameter), and Nu

(parameter used instead of C). The performance results of
18 different models that were developed for each province
by using the POL, NOR-P, and RBF core functions with
SVR are shown in Figure 11. The estimates were obtained
between the 0.6786 and 0.8596 range for the province of
Kahramanmaras according to the R2 scale and 0.5273-
0.7969 for Isparta. A total of 12 different estimation models
were developed with LibSVM for the data groups in each
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Figure 12: Scatter plots of the most successful models that were developed according to SVR and LibSVM for (a) Isparta and for (b)
Kahramanmaras.

Table 9: Estimation results of the most successful models that were developed according to LibSVM and the input data of both provinces.

Target provinces Kahramanmaras Isparta
Data groups SVM type RMSE MAE SMAPE (%) R2 RMSE MAE SMAPE (%) R2

GR1
E-SVR 0.1271 0.1003 15.11 0.7876 0.1431 0.1153 15.46 0.6372

Nu-SVR 0.1257 0.0960 14.97 0.7893 0.1428 0.1144 15.44 0.6377

GR2
E-SVR 0.0742 0.0584 13.43 0.9278 0.0816 0.0637 12.64 0.8818

Nu-SVR 0.0675 0.0501 12.14 0.9394 0.0765 0.0580 12.05 0.8961

GR3
E-SVR 0.0765 0.0604 13.69 0.9229 0.0815 0.0643 12.95 0.8821

Nu-SVR 0.0697 0.0523 12.42 0.9352 0.0752 0.0573 12.11 0.8995

GR4
E-SVR 0.1300 0.1026 15.17 0.7781 0.1495 0.1193 15.66 0.6050

Nu-SVR 0.1287 0.0984 14.97 0.7792 0.1491 0.1185 15.64 0.6057

GR5
E-SVR 0.0780 0.0616 13.77 0.9197 0.0849 0.0673 12.28 0.8728

Nu-SVR 0.0717 0.0540 12.59 0.9315 0.0827 0.0621 11.77 0.8792

GR6
E-SVR 0.0802 0.0631 13.80 0.9146 0.0827 0.0645 12.52 0.8790

Nu-SVR 0.0756 0.0576 12.96 0.9237 0.0779 0.0594 12.15 0.8925
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province. The statistical results of SR estimation models that
were developed by using the RBF kernel function for two dif-
ferent regression-based SVR algorithms are given in Table 9.

The models that were developed with Nu-SVR were more
successful than E-SVR. The model that was developed with
the GR2 data group had the most successful estimation
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Figure 13: Scatter plots of a KNN-based most successful models according to the (a) GR2 input data for Kahramanmaras and (b) GR3 for
Isparta.

Table 10: Estimation results of the twomost successful models that were developed by using a KNN algorithm according to input data groups
of both provinces.

Target provinces Kahramanmaras Isparta
Data groups The number of neighbors (K) RMSE MAE SMAPE (%) R2 RMSE MAE SMAPE (%) R2

GR1
6 0.1221 0.0903 14.25 0.8022 0.1447 0.1140 15.53 0.6274

10 0.1205 0.0896 14.20 0.8069 0.1434 0.1131 15.42 0.6338

GR2
4 0.0618 0.0427 8.91 0.9490 0.0692 0.0481 9.34 0.9151

6 0.0605 0.0419 8.84 0.9511 0.0693 0.0485 9.38 0.9150

GR3
4 0.0631 0.0437 9.08 0.9470 0.0646 0.0438 8.88 0.9261

6 0.0631 0.0439 9.13 0.9469 0.0648 0.0450 9.17 0.9258

GR4
6 0.1288 0.0956 14.44 0.7798 0.1506 0.1157 15.42 0.5980

10 0.1257 0.0937 14.30 0.7898 0.1463 0.1134 15.26 0.6194

GR5

4 0.0645 0.0446 9.37 0.9445 — — — —

6 0.0649 0.0448 9.32 0.9439 0.0820 0.0614 9.33 0.8805

10 — — — — 0.0811 0.0610 9.32 0.8829

GR6

3 0.0718 0.0487 10.34 0.9318 — — — —

4 0.0708 0.0482 10.32 0.9335 0.0728 0.0514 9.79 0.9065

6 — — — — 0.0730 0.0522 10.07 0.9062
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performance with 0.0675, 0.0501, 12.14%, and 0.9394,
respectively, according to the RMSE, MAE, SMAPE, and R2

scales in the Kahramanmaras target area. Similarly, the
model that was developed by using the GR3 data group in
Isparta was successful with 0.0752, 0.0573, 12.11%, and
0.8995, respectively. Comparative scatter plots of the most
successful models developed with two different SVRmethods
used in the study according to the selected provinces are
given in Figure 12.

As understood in Figure 12, the best SR estimation results
of the models that were developed with LibSVM from both

similar methods were found to be more successful than the
classic SVR. For this reason, it was decided to use the estima-
tion results of LibSVM in comparative evaluation of ML
algorithms.

A total of 36 different estimation models were devel-
oped by using selected input data for each province based
on six different K-neighbor coefficients between 1 and 10
with the KNN ML algorithm. The estimation performance
results of the two most successful models that were devel-
oped in each data group with user-defined K parameters
are given in Table 10. It was determined that the K
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Figure 14: Scatter plots of the M5 rules-based most successful models according to (a) GR3 input data for Isparta and (b) GR5 for
Kahramanmaras.

Table 11: Estimation results of the two most successful models that were developed by using the M5 rules algorithm according to input data
groups of both provinces.

Data groups
Target provinces

Kahramanmaras Isparta
RMSE MAE SMAPE (%) R2 RMSE MAE SMAPE (%) R2

GR1 0.1216 0.0915 14.37 0.8026 0.1400 0.1114 15.46 0.6514

GR2 0.0625 0.0431 9.07 0.9479 0.0666 0.0447 8.77 0.9218

GR3 0.0625 0.0430 9.09 0.9479 0.0650 0.0441 8.42 0.9254

GR4 0.1254 0.0944 14.56 0.7903 0.1454 0.1140 15.44 0.6236

GR5 0.0610 0.0418 9.01 0.9506 0.0814 0.0593 9.37 0.8822

GR6 0.0614 0.0420 9.08 0.9500 0.0655 0.0445 8.43 0.9245
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parameter was a defining feature in the estimation models,
but there was not always a correct proportion towards an
increase. No significant performance increases were
detected in all models developed with over 10 K parame-
ters, and modelling time was extended. In the relevant
table, the most successful model that was developed for
Kahramanmaras estimated SR with 0.0605, 0.0419,
0.9511, and 8.84%, respectively, with the GR2 data group
according to the RMSE, MAE, R2, and SMAPE scales.
For Isparta, similarly, it was estimated with the GR3 data

group resulting in 0.0646, 0.0438, 0.9261, and 8.88%,
respectively. The scatter plots of estimation results are
given in Figure 13. It is seen in the SMAPE scale that the
SR estimations of the provinces used in the study are very
close and similar.

Six different rule-based estimation models were devel-
oped for each province by using selected data groups of the
targeted cities with the M5 rules algorithm. The estimation
performance of the developed models is given in Table 11.
The best model developed for Kahramanmaras was
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Figure 15: MAE performance comparisons of the best models developed by using ML algorithms according to data groups for (a)
Kahramanmaras and (b) Isparta.

Table 12: Comparison of the most successful HAGSR estimation models that were developed by using MFFNNN, KNN, M5 rules, and
LibSVM for both provinces.

Statistical indicators
Target provinces

Kahramanmaras Isparta
MFFNN KNN M5 rules LibSVM MFFNN KNN M5 rules LibSVM

RMSE 0.0508 0.0605 0.0610 0.0675 0.0536 0.0646 0.0650 0.0752

MAE 0.0341 0.0419 0.0418 0.0501 0.0352 0.0438 0.0441 0.0573

R2 0.9656 0.9511 0.9506 0.9394 0.9488 0.9261 0.9254 0.8995

SMAPE (%) 7.79 8.84 9.01 12.14 7.77 8.88 8.42 12.11

Data groups GR2 GR2 GR5 GR2 GR3 GR3 GR3 GR3
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estimated by using the GR5 data group, which is unlike other
ML algorithms employed in the study. Isparta, on the other
hand, was estimated similarly by using the GR3 data group.
According to the RMSE, MAE, R2, and SMAPE statistical
scales, the values of 0.0610, 0.0418, 0.9506, and 9.01%,
respectively, were obtained in the performance of the best
model for Kahramanmaras. Similarly, 0.650, 0.0441,
0.9254, and 8.42% were obtained for the province of Isparta.
Scatter plots of the most successful models that were devel-
oped in the target cities are given in Figure 14. According
to the plots, it is understood that the data distributions and
performance measurement metrics of the target provinces
were very close to each other.

Aside from the trial studies in all ML algorithms used in
the target provinces to increase estimation accuracy and to
select the most successful models in each data group, 3000,
72, 12, and 24 different estimation models were developed
with MFFNN, KNN, M5 rules, and SVR algorithm-based
LibSVM library, respectively. In all studies, the estimated
performance of the models that were developed with the
GR2 (month, hour, T , H, and HSD) and the GR5 (month,
hour, T , H, WS, and HSD) data groups determined at the
end of the feature selection process in Kahramanmaras was
more successful. In Isparta however, the models that were

developed with the GR3 (year, month, day, hour, P, T , and
HSD) data group showed higher performance. The statistical
comparisons of the best performing models according to ML
algorithms used in SR estimations of both provinces are
given in Table 12. Based on the statistical scales that were
employed in the study, the MFFNN algorithm estimated SR
more accurately in both provinces than the other algorithms.
However, similar estimation results were achieved with the
KNN andM5 rules algorithm for each province, and the low-
est performance values were detected in SVR models that
were developed with LibSVM. With the MFFNN algorithm,
the SR estimation results achieved in Kahramanmaras and
Isparta according to SMAPE were 7.79% and 7.77%, respec-
tively; 8.84% and 8.88%, respectively, with the KNN algo-
rithm; and 12.14% and 12.11%, respectively, with the
LibSVM algorithm. According to SMAPE, the fact that the
SR estimation results of both provinces selected in the study
are very close to each other a level is associated with the sim-
ilarity of latitude and some geographical characteristics.

In the HAGSR estimation studies, the final performance
results of the estimation models that were developed with
the GR6 data group by using all the available input data were
lower than the final performance results of models that were
developed with the GR2, GR3, and GR5 data groups, which
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Figure 16: SMAPE performance comparisons for the best models developed by using ML algorithms according to data groups for (a)
Kahramanmaras and (b) Isparta.
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were groups created at the end of the feature selection pro-
cess. MAE and SMAPE performance plots according to four
ML algorithms of all data groups used for the target prov-
inces are given in Figures 15 and 16. It is clearly seen that
feature selection processes have positive contributions to
the performance of the developed estimation models.

The HAGSR estimation models that were developed for
Kahramanmaras and Isparta estimated the solar energy
source of target areas quite well in general. However, the
studies with the GR1 and GR4 data groups represent the
input data groups that have the lowest estimated perfor-
mance in both provinces. As a result, it was concluded that
CfsSE and CorrAE, which are among the feature selection
functions, applied to the meteorological and categorical input

datasets, were inadequate in determining the best input data.
The most successful feature selection functions were ClassAE
and WSE for Kahramanmaras and CSE and WSE for Isparta.
The comparisons of the SR estimations and real measure-
ment results of the best models that were developed with
the four ML algorithm using the 7 input data that were deter-
mined with the CSE and WSE feature selection functions for
Isparta are given in Figure 17. Similarly, the comparisons of
the best models that were developed with 5 inputs for the
ClassAE feature selection function and 6 inputs for the
WSE feature selection function for Kahramanmaras are
given in Figure 18. The five-day hourly input data that were
selected randomly from the test data for July 5-9 in 2004 were
used for comparisons. It is seen that the HAGSR estimation
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Figure 18: Comparative performance plot of ML algorithm models measured and estimated by using five-day input data from July 2004 in
Kahramanmaras according to HAGSR results.
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Figure 17: Comparative performance plot of ML algorithm models measured and estimated by using five-day input data from July 2004 in
Isparta according to HAGSR results.
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models that were developed for Kahramanmaras are slightly
more successful in estimating SR compared to Isparta where
the test data time zones were selected randomly for each day.

The comparison of the HAGSR estimation models that
were developed by using ML algorithms in the literature,
and the most successful model developed in this study, is
given in Table 13. The most successful models that were
developed in previous studies were commonly based on a
neural network, as in this study. It is understood that the
accuracy of the proposed estimation model is better than,
or similar to, previous studies.

4. Conclusion

In the present study, a comparative evaluation was made by
developing models based on four different ML (MFFNN,
KNN, SVR-based LibSVM, and M5 rules) algorithms to pre-
dict the HAGSR of the provinces of Kahramanmaras and
Isparta, which are located on the same latitude coordinates
of the Mediterranean Region. The most suitable input fea-
tures were determined for each feature selection function
by using meteorological and categorical input data and by
developing 29 different applications based on six different
feature selection functions with WEKA, and the input data
were created in five different selection groups (GR1-GR5).
Six different input datasets were determined to be used in
modelling by including the GR6 data group in which all input
data were collected to this selection group. The most success-
ful estimation models were developed with the MFFNN
algorithm in Kahramanmaras and Isparta by using the GR2
and GR3 data groups, respectively. Although month, hour,
T , H, and HSD data were the most effective features in
Kahramanmaras on estimation models, the variables of year,
month, day, hour, P, T , and HSD were the most effective in
Isparta. It is clear that HSD is the most effective data on SR
in all data groups selected. The results show that the predic-
tive accuracy of models that were developed with the data
groups created at the end of the selection process increased,
modelling time decreased, and the model is easier to
interpret.

According to the data groups, the performance of KNN
and M5 rules models was quite similar in each province.
The performance of the estimation model that was developed
with the KNN algorithm for the GR2 data group in
Kahramanmaras was R2 = 0:9511, and R2 = 0:9506 for the
M5 rules algorithm. In Isparta, the performance of the esti-
mation model that was developed with the KNN algorithm
for the GR3 data group was R2 = 0:9261, and R2 = 0:9254
for the M5 rules algorithm. The lowest performances were
received for the GR1 and GR4 data groups in each province.

The best SR estimation performance of the two provinces
was achieved with the MFFNN algorithm. When the results
were evaluated in statistical terms, very close values were
obtained in Kahramanmaras and Isparta. The MAE of the
most successful model that was developed in Kahraman-
maras for the MFFNN algorithm was found to be 0.0341
and 0.0352 for Isparta. Similarly, the SMAPE of the most
successful model that was developed in Kahramanmaras
was found to be 7.79% and 7.77% in Isparta. Although the
statistical evaluation result of the different ML algorithms
used in the study was low, similar results were obtained.
These results show us that these two cities, which are very
far from each other, have similar SR estimation potentials
and that the latitude or different geographical characteris-
tics have significant effects on these similarities. As a result
of the present study, the HAGSR potential of both cities
was estimated successfully and performed better than any
other studies conducted in this field. In future studies, dif-
ferent parts of Turkey and the world should be evaluated
in terms of performance of various ML algorithms and time
intervals.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author or Turkey General
Directorate of MeteorologyMeteorological Data Information
Sales and Presentation System (MEVBIS) website upon
request; website address: https://mevbis.mgm.gov.tr/mevbis/
ui/index.html#/Workspace.

Table 13: Comparison of the performance of the present study with various HAGSR estimation models of the previous studies.

ML methods Best methods Time range Location Author [Ref.]
Statistical indicators

RMSE MAE R2

ANN ANN 2001–2007 La Serena (Chile) Lazzús et al. [18] — — 0.9437

ANN ANN
02 February–31

May 2011
Algeria Hasni et al. [17] 0.172 2.9971 0.9999

MLP MLP 2009–2012 Fez (Morocco) Ihya et al. [62] — — 0.8896

MLP-NARX NARX 2010–2014 Fes (Morocco) Loutfi et al. [32] — — 0.95

AdaBoost, LR, KNN,
CART, SVR, ANN,
RD regression

RD regression 2013–2015 South Korea Kim et al. [63] 577.5 — 0.705

ANN ANN 2006–2010 Ajaccio (Corsica) Notton et al. [12] 12.43 19.17 0.998

MARS-ANN-LR ANN 2010–2016 Hong Kong Li et al. [28] 0.270 0.194 0.918

MFFNN-KNN-M5
rules-LibSVM

MFFNN 2002–2006
Kahramanmaras-Isparta

(Turkey)
Present study 0.0341 0.0508 0.9656
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