
Introduction

Water-resource investigations should embrace and 
deal with effective reservoir water storage, which can 
be employed for water supply, irrigation, providing 
flood and drought control, hydropower and energy 
security of local generation. Dam reservoirs are 
used  to  provide  storage for  water and  are important 

elements in planning and managing water resources. If 
the dam reservoir level is estimated correctly, the most 
suitable dam operation performance can be obtained. 
Reservoir level parameters are inflow to reservoir, 
water storage in reservoir, water release from reservoir, 
evaporation, soil moisture and infiltration. They represent 
uncertainties and must be considered in water resource 
operation. Reservoir water level is also important in the 
analysis and design of several water resource projects 
such as dam construction, irrigation needs and flood 
control. During a flood, the opening of the dam weir 
passage should be sufficient to ensure that reservoir 

Pol. J. Environ. Stud. Vol. 28, No. 5 (2019), 3451-3462

	  		   			    		   		  Original Research             

Estimating Dam Reservoir Level Fluctuations 
Using Data-Driven Techniques 

Fatih Üneş1*, Mustafa Demirci1, Bestami Taşar1, 
Yunus Ziya Kaya2, Hakan Varçin1

1Iskenderun Technical University, Civil Engineering Department, Hydraulics Division, İskenderun, Hatay, Turkey
2Osmaniye Korkut Ata University, Civil Engineering Department, Hydraulics Division, Osmaniye-Turkey  

Received: 26 February 2018
Accepted: 2 August 2018

Abstract

Estimating dam reservoir level is very important in terms of the operation of a dam, the safety of 
transport in the river, the design of hydraulic structures, and determining pollution, the salinity of the 
river flow fluctuations and the change of water quality in the dam reservoir. In this study, an adaptive 
network-based fuzzy inference system (ANFIS ), support vector machines (SVM), radial basis neural 
networks (RBNN) and generalized regression neural networks (GRNN) approaches were used for 
the prediction and estimation of daily reservoir levels of Millers Ferry Dam on the Alabama River in 
the USA. Particularly, the feasibility of ANFIS as a prediction model for the reservoir level has been 
investigated. The Millers Ferry Dam on the Alabama River in the USA was selected as a case study 
area to demonstrate the feasibility and capacity of ANFIS, SVM, RBNN, and GRNN. The model results 
are compared with conventional auto-regressive models (AR), auto-regressive moving average (ARMA), 
multi-linear regression (MLR) models, and artificial intelligence models for the best-input combinations. 
The comparison results show that ANFIS models give better results than classical and other artificial 
intelligence models in estimating reservoir level.

Keywords:	  reservoir level, prediction, adaptive network-based fuzzy inference system, support vector 
machines, radial basis neural networks, generalized regression neural networks

*e-mail: fatih.unes@iste.edu.tr

DOI: 10.15244/pjoes/93923 ONLINE PUBLICATION DATE: 2019-04-28



3452 Üneş F., et al.

capacity does not exceed the limits and that discharges 
do not flow down. If drought occurs, the reservoir needs 
to collect water and be released adequately to fulfill its 
aims. Reservoir water release modeling is significant 
to make fast and accurate decisions when dealing with 
flood and drought. Statistical prediction is important in 
determining dam reservoir level.  

Recently, artificial intelligence techniques such as 
artificial neural networks (ANN), adaptive network-
based fuzzy inference system (ANFIS), and radial basis 
neural network (RBNN) methods have been widely 
applied in the modeling complex nonlinear phenomena 
in hydrology and water resource systems. 

The artificial intelligence approach is a technique 
widely used in several engineering problems such 
as estimating suspended sediment, evaporation, 
groundwater level and nearshore bar volumes [1-5]. Zaji 
and Bonakdari [6] applied genetic algorithm artificial 
neural network and genetic programming methods to 
estimate lake level. Nitsure et al. [7] used ANN and 
fuzzy techniques to estimate changes in seawater level. 
Unes [8] and Unes et al. [9] developed an ANN model 
for predicting reservoir level fluctuation. Parmar and 
Bhardwaj [10] used neural networks, fuzzy and wavelet 
coupled model to predict river water. Yanping et al. [11] 
used a radial basis neural network model to establish 
the surrogate model of groundwater flow numerical 
simulation in Jinquan Industrial Park, Inner Mongolia, 
China. Wiktor et al. [12] used a neural network model 
based on salinity, since salinity reduces the amount 
of nutrients and soil temperature. They investigated 
spatial analysis of soil properties and identification of 
factors affecting their diversity in agricultural areas 
of mountain catchments. Shiri et al. [13] developed an 
extreme learning machine, genetic programming and 
artificial neural network models for predicting water-
levels in Urmia Lake. 

Emamgholizadeh et al. [14] used the ANN model 
for forecasting groundwater levels of Bastam Plain. Sun 
and Trevor [15] developed multiple model combination 
methods for annual maximum water level prediction 
during river ice breakup. Unes [16] predicted plunging 
depth of density flow in a dam reservoir using the 
ANN technique. Himan et al. [17] developed a neuron-
fuzzy model for identifying the most suitable location 
for a water reservoir in the area of Batu Pahat, Johor, 
Malaysia. Demirci and Baltacı [18] estimated suspended 
sediment of the Sacremento River in the USA using 
fuzzy logic. Seo et al.  [19] used artificial intelligence 
techniques for daily water level forecasting. Piri and 
Kahkha [20] predicted the water level fluctuations of 
Chahnimeh Reservoirs in Zabol using ANN, ANFIS 
and the Cuckoo optimization algorithm.  

In this study, ANFIS, RBNN, SVM and conventional 
auto regressive (AR), autoregressive moving average 
(ARMA), and multi linear regression (MLR) techniques 
are investigated to estimate daily reservoir levels. The 
later sections of this article are arranged as follows. 
In the second part, the applied dataset as well as the 
ANFIS, RBNN and SVM techniques are discussed. The 
third section describes the statistical proposals applied 
for model analysis, and the fourth section contains 
cues and discussions. Finally, the last section gives the 
conclusions of this study.

Materials and Methods

Case Study

Daily reservoir level records of Millers Ferry Dam on 
the Alabama River in the USA were used in the present 
study. The Millers Ferry Lock and Dam are located 
near a community on the Alabama River, Alabama. The 

Fig. 1. a) Millers Ferry Dam Map and b) location of Millers Ferry Dam in USA.
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dam is a lock and a hydroelectric dam on the Alabama 
River that was built and operated by the United States 
Army Corps of Engineers. The construction of the 
complex began in 1963 and was completed in 1974. 
The Millers Ferry Station was commissioned in 1970 
and has a production capacity of 90 megawatts. The 
reservoir covers 70 km2 and has approximately 800 km 
of shoreline (Fig. 1). 

The gauging station datum is 40 m above sea level. 
The time-series data of Millers Ferry Dam station 
(USGS Station No. 02427505 operated by the US 
Geological Survey (USGS)) were used in the study. 
Data sample consists of 6 years (from 1 October 2006 
to 19 December 2012) of daily reservoir level records. 
The first 1461 daily levels data were used for training, 
the remaining 811 daily levels data were used for testing 
each model. Table 1 indicates the statistical parameters 
of used data during the study period.

Adaptive Network Fuzzy Inference System 
(ANFIS)

Jang [21] first introduced NF. It approximates any 
real continuous function on a compact set to any degree 
of accuracy. The NF is functionally equivalent to fuzzy 
inference systems (Jang et al., [22]). In this study, 
a fuzzy inference system with two and more input 
variables such as x, y, z .., and one output variable f 
was used. The resulting Sugeno fuzzy reasoning system 
is shown in Fig. 2. Here the output f = f(x,y,z) is the 
weighted average of the individual rules outputs and is a 
crisp consecutive function. In this study, x, y and z might 
be considered as previously recorded dam reservoir 

levels L(t), L(t-1),… and L(t-n), while the output f would 
represent reservoir level at the following time step, 
L(t+1). The corresponding general ANFIS architecture 
for a Sugeno model is illustrated in Fig. 3. The ANFIS 
is a network structure consisting of a number of nodes 
connected through directional links. The basic learning 
rule of ANFIS is a multilayer feed-forward network that  
uses neural network learning algorithms and fuzzy 
reasoning.

Each node has a node function that can be set or 
fixed parameters. The network learning or training 
phase is a process used to determine the parameter 
values sufficiently to match the training data.

A typical rule set with two fuzzy If/Then rules can 
be expressed as:

Rule 1: If x is A1 ,and y is A3 ,and z is 
A5; then f 1 = p1x+ q1y+ r1z+c1

Rule 2: If x is A2  and y is A4  ,and z is 
A6; then f 2 = p2x+ q2y+ r2z+c2

…where A1, A2, A3, A4 , A5, and A6 are linguistic labels 
(such as “low,” “medium” or “high”), f1 and f2 indicate 
the output functions of rule 1 and rule 2, respectively, 
and {pi, qi, ri, ci} are the parameters referred to as 
consequent parameters.

Layer 1:  Each node (i) in this layer is an adaptive 
node that represents subscription functions defined by 
generalized bell functions, e.g.:

Z l,i =µ Ai (x)        for i = 1, 2, 3 or
Z l,i =µ Ai-3 (x)      for i = 4, 5, 6

Table 1. Statistical parameters of the applied data set during the study period.

Xmax Xmin Xmean Sx Csx

Training period 24.56 23.52 24.26 0.247 -1.472

Testing period 24.57 23.77 24.34 0.126 -0.937

Whole period 24.57 23.52 24.29 0.215 -1.739

Xmean Xmax, Xmin, SX and CSX denote the mean, maximum, minimum, standard deviation and skewness coefficient, respectively.

Fig. 2. Typical Sugeno fuzzy model for two inputs and with two rules.
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…where x (or y) is the ith node input and Ai 
(or Ai-2) is a linguistic tag associated with this node. Zl 
in the expressions indicates how quickly the blurred 
conglomerate will meet the quantifier of entry level A 
(= A1, A2, A4 , A5…An) and input x (or y, z). Membership 
functions for A1,..,An are generally defined by the 
generalized bell functions, e.g.:
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…where x (or y) and {a1, b1 and c1} are adaptive 
variables known as pre-parameters. These parameters 
were calibrated using the gradient descent technique 
during the training phase. The output of this layer is the 
membership value of the premise part.

Layer 2: This layer consists of nodes that multiply 
the incoming signals and send out the product. This 
output represents the most effective resistance of the 
rule.

For example, in Fig. 3:
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Layer 3: In this layer, the nodes calculate the ratio 
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Layer 4: This layer’s nodes are adaptive with node 
functions:
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…where 1w  is the output of Layer 3 and {pi,qi, ri} are 
the parameter sets. The parameters of this layer are 
called the result parameters.

Layer 5: The last fixed output of this layer is 
calculated as the sum of all incoming signals:
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An adaptive network is created that is also 
functionally equivalent to a Sugeno first-order fuzzy 

inference system. Further information about ANFIS can 
be found in Jang et al. [22].

Support Vector Machine (SVM)

SVM is a learning approach found by Cortes and 
Vapnik [23] for solving the classification and regression 
problems. Classification of variables on a plane can be 
conducted by drawing a boundary between them. The 
boundary that is drawn between variables must be as  
far from each variable as possible. SVM provides  
the opportunity to define how this boundary between  
a variables group can be drawn. It is based on  
statistical learning theory.  When the training data  
{(x1, y1),...., (xn, yn)} set is considered, it specifies the input 
field of every xi ⊂ Rn samples and has a corresponding 
target value yi ⊂ R  for i = 1,..., n, where n corresponds 
to the size of the training data. 

The SVM estimating function can be expressed as:

y = (Kxi · Wjk) + b                      (7)

…where the kernel function is Kxi , b is bias term of SVM 
network and Wjk is called the Lagrange multipliers 
that determine the relative significance of the 
training data sets for final output. The kernel 
function of non-linear radial basis is:

Kxi = e–γ(xi – yi)                          (8)

…where γ is a user-defined parameter. The network 
architecture of SVM is given in Fig. 4.

Radial Basis Neural Networks (RBNN)

The RBNN were first formulated into the neural 
network literature by Broomhead and Lowe [24].  
A radial basis function network is defined as an artificial 
neural network. This network uses radial basic functions 
as functions to enable it. 

An RBNN contains a hidden layer of radial units 
and each hidden layer models a Gaussian response 

Fig. 3. ANFIS network structure.
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surface. In order to model any function in any shape, 
it is not compulsory to have a multiple hidden layer for 
the functions that are nonlinear, since modeling any 
function is possible when we have adequate radial units. 
The standard RBF has an output layer with identity 
activation function (see Haykin [25]). The inspiration 
of RBNN model came from the observation made in 
biological neurons having locally tuned responses. 
In particular, some parts of the nervous system 
have neurons that illustrate locally tuned response 
characteristics, for example, visual cortical cells 
sensitive to rods guided in a specific direction within a 
small region of the visual field (Poggio and Girosi [26]).

RBNN model theory is based on the field of 
interpolation of multivariate functions. The RBNN 
model input layer contains input data. The hidden layer 
transforms the data from the input field into a hidden 
field using a non-linear function. The hidden layer 
transforms the data from the input field into a hidden 
field using a non-linear function. The output layer is 
linear and responsive to the network.

Rd→R with F(xs) = ys for all s = 1,..., N 

...where F is a function of a linear space. In the RBNN 
approach, the interpolating function F is a linear 
combination of basis functions:

( ) )x(pxxw)x(F
N
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φ

     (9)    

…where 
.

 denotes Euclidean norm, w1,..., wN are real 
numbers, φ a real valued function, and p is a polynomial 
of degree. 

The interpolation problem is to reveal the real 
coefficients w1,..., wN and polynomial mean p = ΣD

l=1a1pj, 
where pl,..., pD are standard stiffness of pD and a1,..., aD 
are the actual coefficients. If the interpolation problem 
has a unique solution for selecting any data point, this 
function φ is called the radial basis function. In some 
cases, the polynomial in Equation (10) can be neglected 
by combining this equation with Equation (11):

yw =φ                          (10)

…where w = (w1,..., w N), y = (y1,...,yN), and φ is an NxN 
matrix defined by

( )( ) N,....,1s,ksk xx =−= φφ
        (11)

The solution w of the interpolation problem can be 
explicitly calculated and found in the form of: w = φ–1y. 
The most popular and widely used radial basis unction 
is the Gaussian basis function:

)2cx( 2
je σφ −−=                (12)

Fig. 4. Network architecture of SVM.

Fig. 5. Radial Basis Function Network.
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…where cj (c Є Rd) is the center of the neuron in the 
hidden layer and φ is the activation function, which 
is a non-linear function and has many types, such as 
Gaussian, multiquadric, thinspline and exponential 
functions. The basic architecture for an RBF network 
is shown in Fig. 5. The input layer is simply a fan-out 
layer and nothing happens in this layer. The hidden layer 
applies a non-linear mapping from the input part to a 
(generally) higher dimensional part where the models 
become linearly separable.

Autoregressive (AR), Autoregressive Moving 
Average (ARMA) and Multi-Linear Regression 

(MLR) Models

In the prediction of the time series, good results 
have been obtained by researchers in the last few 
decades. Recently, the use of traditional methods in 
time series analysis has been increased by researchers. 
In this study, traditional methods such as Box-Jenkins 
(AR), autoregressive moving average (ARMA) and the 
autoregressive method of the multilinear regression 
(MLR) model have been applied for time series analysis. 
The time series modeling methods used have also been 
effective for a long time, but they are still experiencing 
fixed and linearity problems and only give reasonable 
accuracy.

An order p as an autoregressive model that can be 
written as AR(p) can be described as

yt =φ1 yt-1 + φ2 yt-2………+ φt-p yt-p + zt        (13)

…where zt  is a completely random process; and 
E(zt) =  0, Var(zt) = σz

2. The parameters φ1,..., φp are called 
AR coefficients. The term “autoregressive” is defined by 
the degeneracy of Xt over past values. In this study, AR 
(1) ... .AR (5) models are applied to the reservoir level 
data using MATLAB. The Yule-Walker equation is used 
to estimate the AR coefficients.

ARMA [p, q] (autoregressive moving average) 
models (Box and Jenkins [27]) use a weighted linear 
combination of previous values and shocks, which can 
be written as: 

yt = φ1 yt-1 + φ2 yt-2………+ φt-p yt-p +….+
+ at + θ1 at-1 + θ2 at-2………+ θt-p at-p   

 (14)

…where yt is the predicted value, ai’s are the shocks or 
residuals, and φi’s and θi’s are the associated weights. The 
notation [p, q] specifies the number of autoregressive and 
moving average terms in the model. The Box-Jenkins 
method is a method by which statistical significance can 
be tested. It provides a systematic recursive approach to 
determine the optimal number of terms and changes the 
weights until an optimum set of weights is found.

In this paper, models ARMA (1, 1), ARMA (3, 3) 
and ARMA (5, 5) have been applied to Miller Dam 

reservoir level data using MATLAB programming.
MLR models are used as a weighted linear 

combination of previous reservoir level values. 
Assuming that the Y-dependent variable is affected by 
m independent variables X1, X2,…,Xm, and that a linear 
equation is chosen for the relationship between them, 
the Y regression equation can be written as:

exb...xbxbay mm2211 +++++=    (15)

…where y is a linear combination of the parameters, 
(bm)s are the constants of regression equation, e is the 
residual term, and the subscript i indexes a particular 
observation. 

The training and testing data groups used for the 
models are also used for MLR models. For each model, 
mean square error (MSE), mean absolute error (MAE) 
between model estimations and the observed values are 
computed as follows:

 (16)

   (17)

…where N and Yi denote the number of data sets and 
dam reservoir level, respectively.

Results and Discussion

Predicting reservoir level variations by ANFIS, 
RBNN, SVM, MLR, AR and ARMA models is the 
aim of this study. Based on the partial autocorrelation 
function analysis, several input combinations were used 
to estimate reservoir levels (Fig. 6). Lt represents the 
lake level at time interval t. Input combinations show 
the last recorded daily delayed lake levels (Lt-5, Lt-4, Lt-3, 
Lt-2, and Lt-1). 

With autocorrelation and partial autocorrelation 
statistics, we estimate daily reservoir level time series 
at lag 0 to lag 14 intervals and 95% confidence interval 
(Fig. 6). The autocorrelation function shows a correlation 
between the pairs of all points of the reservoir-level time 
series.

As shown from Fig. 6, the lake-level values 
are moderately auto correlated. The slower water 
exchange in a dam reservoir can lead to inertia of 
the water levels. This produces a low-frequency 
oscillating component. A partial auto-correlation 
refers to autocorrelation of a series with itself under 
steady-state conditions, while controlling the effect 
of intermittent delays. The autocorrelation of a series 
is spontaneously indicated by partial autocorrelation 
without the mixed effects of delayed autocorrelation 
(Mutlu et al., [28]). The partial autocorrelation function 
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describes a significant correlation up to delay 5,  
and falls within confidence bounds for this reason.  
The pattern in partial autocorrelation decreases rapidly, 
confirming autoregressive process dominance. Partial 
autocorrelation coefficients suggest that the delay level 
should be included for up to 5 days.

The partial autocorrelation coefficients suggest the 
incorporation of lake-level values of up to 5 days lag 
in input vector to the employed models (Fig. 6). The 
correlation analysis was implemented to evaluate the 
degree of effect of each variable and to select the most 
effective input vectors. The following combinations of 

input data were evaluated: (i) Lt-1, (ii) Lt-1, Lt-2, and Lt-3, 
(iii) Lt-1 ,  Lt-3,  and Lt-5. The output layer has only one 
neuron, and the reservoir level Lt represents the current 
day in all models.

Predicting Reservoir Level Fluctuations 
of Millers Dam

According to the partial autocorrelation function, the 
5 lag times have a significant influence on predicting 
levels for the following time step (Lt-1). Therefore, it 
seems that up to 5 lag-time reservoir levels are necessary 

Fig. 6. a) Autocorrelation and b) partial auto-correlation functions of daily reservoir levels.

Models Input combination MSE(m2) MAE(m) R

ANFIS1 Lt-1 0.0031 0.0404 0.898

ANFIS 3 Lt-3, Lt-2, and Lt-1 0.0030 0.0397 0.903

ANFIS 5 Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0028 0.0396 0.909

RBNN1 Lt-1 0.0039 0.0453 0.868

RBNN 3 Lt-3, Lt-2, and Lt-1 0.0036 0.0433 0.879

RBNN 5 Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0035 0.0431 0.880

SVM 5 Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0784 0.0564 0.810

GRNN 5 Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0040 0.0467 0.865

ANN5  Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0032 0.0415 0.893

MLR1 Lt-1 0.0068 0.0602 0.792

MLR3 Lt-3, Lt-2, and Lt-1 0.0061 0.0564 0.797

MLR5 Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0060 0.0567 0.800

AR(1) Lt-1 0.0069 0.0602 0.792

AR(3) Lt-3, Lt-2, and Lt-1 0.0063 0.0573 0.796

AR(5) Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0060 0.0564 0.799

ARMA(1-1) Lt-1 0.0066 0.0587 0.792

ARMA(3-3) Lt-3, Lt-2, and Lt-1 0.0061 0.0565 0.798

ARMA(5-5) Lt-5, Lt-4, Lt-3, Lt-2, and Lt-1 0.0060 0.0566 0.799

Table 2. Comparison of different models with MSE, MAE and R for testing period..
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for the task at hand. The ANFIS, RBNN, SVM,  
GRNN, ANN (Üneş at al. 2015), ARMA, AR and 
MLR model results of daily dam reservoir level  
predictions with various and optimal input  
combination for the testing periods can be seen in 
Table 2. Each input combination was applied for 

introducing the models to produce good predictions. 
The table clearly shows that the ANFIS 5 model with 
the input combination Lt-5, Lt-4, Lt-3, Lt-2 and  Lt-1 gives 
the best results. Table 2 also shows that the ANFIS 5 
model performs better than the other models in terms 
of the R, MSE and MAE statistics in the test period. 

Fig. 7. Observed and predicted reservoir levels for Millers Dam in the test period: a) ANFIS5, b) ANFIS3, and c) ANFIS1.
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Increasing the accuracy of the model while adding more 
input variables does not significantly affect predictive 
accuracy. 

MSE and MAE values of the MLR model for  
various lead times during the test period are given  
in Table 2. Using Lt-1 as the only input variable resulted 

in less accurate simulations with MSE = 0.0068 m2 
and MAE = 0.0602 m, while the input combination  
of Lt-5, Lt-3, and Lt-1 give the best results with 
MSE = 0.0060 m2 and MAE = 0.0567 m compared 
to the others. Thus, the MLR application shows that 
reservoir water levels up to Lt-5 significantly increase 

Fig. 8. Observed and predicted reservoir levels for Millers Dam in the test period: a) RBNN5, b) RBNN3, and c) RBNN1.
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modeling accuracy, while adding more variables does 
not noticeably affect prediction accuracy. The overall 
evaluation of the other three linear methods reveals 
that the ARMA5, AR5 and MLR5 models give similar 
accuracy. The similar accuracy of the ARMA5, AR5 
and MLR5 models can be clearly seen from Table 2.  

The back-propagation ANFIS network described in 
the preceding section was applied in MATLAB code 
for forecasting reservoir levels using the previously 
recorded daily reservoir level values. Similarly, a 
different number of input combinations is applied for 
real observed data sets to find out how well the models 
perform. The ANFIS network’s training was stopped 
after 500 epochs. The testing statistics of ANFIS 
models in terms of R, MAE and MSE are presented in  
Table 2. Similar to the ANFIS model, the RBNN model 
was solved by writing a MATLAB code. In the model, 
mean squared error goal and maximum number of 

neurons were taken as 0.005 and 15, respectively. The 
testing statistics of RBNN models in terms of R, MAE 
and MSE are also given in Table 2. 

Fig. 7 shows model performance of the ANFIS. As 
seen in Fig. 7, the ANFIS 5 model performs better than 
the other ANFIS models in terms of R in the test period. 
The ANFIS 5 model also has less scattered predictions 
than the other models and provides the highest R 

coefficient (0.909) for the Lt-5, Lt-4, Lt-3, Lt-2 and   Lt-1 input 
combination. As seen from Table 2, ANFIS models 
perform better than the other models with the evaluation 
of all methods. The test results also show that increasing 
input combination leads to a little increase in model 
accuracy. The R increases from 0.898 to 0.909 for the 
ANFIS and from 0.792 to 0.881 for the other models 
(Fig. 7). 

Fig. 8 shows that the RBNN 5 model performs better 
than the other RBNN models in terms of the R, MSE 

Fig. 9. Observed and predicted reservoir levels for Millers Dam in the test period – SVM 5.

Fig. 10. Scatter graphs for Millers Dam in the test period for: a) ANN (Üneş at all 2015) and  b) GRNN. 
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and MAE statistics in the test period. Fig. 8 also shows 
that the RBNN 5 model has less scattered predictions 
than the other RBNN models and provides the highest R 

coefficient (0.880) for the Lt-5, Lt-4, Lt-3, Lt-2 and  Lt-1 input 
combination. 

Correlation coefficient R = 0.81 was obtained for the 
test from the SVM 5-5 (Lt-5, Lt-4, Lt-3, Lt-2  and  Lt-1 input 
combination) model.  It is shown in Fig. 9 that the SVM 
estimates at the test phase show worse results than the 
ANFIS and RBNN model results, and they show better 
results than the AR, ARMA and MLR model results for 
the observed daily lake levels.

AR and ARMA models are implemented in this 
study and the application of the AR(5) and ARMA(5-
5) models gave similar low R coefficient (0.792-0.799) 
for the test period (Table 2). The previous ANN and 
GRNN model investigations for the test period are 
also compared with the observed reservoir levels 
using the scatter plots for Miller Dam Reservoir. Such 
scatter graphs are given for ANN (Ünes at all. [4]) 
and GRNN models in Fig. 10 and AR(5), ARMA(5-5) 
and MLR(5) models in Fig. 11. These scatter plots of 
autoregressive models provide a low agreement between 
observation and prediction reservoir levels. However, 
AR and ARMA models have the smallest R coefficient  
(0.792-0.799) compared to the other model results, as 
seen in Table 2. 

The forecasting of different input combinations for 
1-day ahead displays that the model clearly increases 
with different input combinations. Fig. 7 shows the 
scatter plots of the observed and simulated dam 
reservoir levels during the ANFIS 5 test periods. As 
seen from Table 2, the ANFIS 5 model has the smallest 
MSE (0.0028 m2), MAE (0.0396 m) and the highest R 

(0.909) for five-input combination during the test period. 
According to all model results, ANFIS picks out as 
having very small MSE, MAE and high R values for the 
same input combination.

Conclusions

In this study, dam reservoir level variations are 
predicted using artificial and statistical techniques for 
Millers Ferry Dam in the USA. Neuro fuzzy and radial 
base models were developed for predicting reservoir 
levels and then compared with SVM, GRNN, ANN,  
models and conventional models ARMA, AR and MLR. 
The following conclusions can be reached from the 
study.

The ANFIS model gives better estimates of the 
reservoir level fluctuations than the RBNN, ANN, 
SVM, and GRNN models and conventional models. 
AR, ARMA and MLR models did not reach the desired 
accuracy for the Millers Ferry Dam case study (in 
the problem) and it cannot provide a good prediction 
for reservoir levels. These models could not reach the 
intended accuracy due to the problem of nonlinearity in 
the dam reservoir level.

However, the ANFIS model adapts to the changing 
input conditions. The advantages of the model are that 
fluctuations in the reservoir level can be explained by 
specifying that the model structures include nonlinear 
dynamics of the entire data set.

The models and methods have no limitations in the 
form of fixed assumptions or formal constraints. 

It is seen from the results that ANFIS is a beneficial 
alternative method for dam reservoir level prediction. 
The reservoir level estimations can be quite informative 
for determining the periodic water supply strategies, 
the hydroelectric energy computations and flood 
management studies.

Therefore, an ANFIS model can be developed for 
a specific region, and can be quite useful in the water 
resource management studies, such as dam reservoir 
level, habitat in dam reservoirs, water quality modeling, 
management and studies. 

Fig. 11. Scatter graphs for Millers Dam in the test period for: a) AR5, b) ARMA5, and c) MLR5  model.
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